Building a direct conversion receiver

IMG_20181208_002739

Ryan Flowers over at MiscDotGeek posted a how-to on building a direct conversion receiver:

In the first installment of this series, we discussed why we’re building a Direct Conversion receiver and talked about some basic ideas. In this installment, we explore what it takes to make the leap from a printed schematic to something physical that works. Follow along!

More details at MiscDotGeek.com.

DakBoard family calendar with Raspberry Pi Zero W and Read Only filesystem

DakBoard Family Calendar

Scott Hanselman made this DakBoard family calendar with Raspberry Pi Zero W and wrote a post on his blog detailing its assembly:

The implementation is simple genius. It’s a browser that starts up full screen (kiosk mode) and just sits there and updates occasionally. DakBoard provides the private webpage and tools to make that happen. You can certainly build this yourself with any number of open source tools. I chose DakBoard because it was simple, beautiful, and I was able to get the whole thing done in less than an hour. I’m sure I’ll spend many hours tweaking it through. There’s also the very popular MagicMIrror platform, so lots of choice and power in this space!

See the full post on his blog here.

IoT LED Dimmer

IOT-Dimmer

Sasa Karanovic shared a how-to on making a IoT LED dimmer:

Making a IoT LED dimmer that you can control via your PC, phone, tablet or any other device connected to the network is super simple, and I’m going to show you how.
I’m sharing my three channel LED dimmer that you can use to dim single RGB LED strip or dim three separate LED channels. I want to be able to control lights above my desk and also mix warm white and cool white strip to give me more flexibility over lighting while I’m working, taking pictures or watching movies.

See the full post on Sasa Karanovic’s blog.

Custom 3D printed magnetic encoder disks for robotics projects

3d-printed-magnetic-disk-encoders

A how-to on making a custom DIY magnetic disk encoder by Erich Styger:

I’m making great progress with the firmware for the new Mini Sumo Robot (see “New Concept for 2018 Mini Sumo Roboter“). The goal is a versatile and low-cost Mini Sumo robot, and the robot comes with the feature of magnetic position encoders. In a previous article I have explained how to mold custom tires for robots (see “Making Perfect Sticky DIY Sumo Robot Tires“), this article is about how to make DIY Magnetic disk encoders.

Via MCU on Eclipse.

Programming STM32F103 Blue Pill using USB bootloader and PlatformIO

800px-Bluepill_pinout

Coyt Barringer wrote a post on his blog showing how he program the Blue Pill STM32F103 using USB Bootloader and PlatformIO:

This is the infamous Blue Pill board – a $2 ARM STM32F103 development board with all the capabilities of a Teensy 3.x at a fraction of the price of an Arduino. So what’s the catch?
I’ll tell you – software support.
A couple weeks ago I decided to invest some time learning this platform because I was sick of paying 20+ dollars for a Teensy. While the PJRC platforms are fantastic, they are expensive and need a proprietary boot loader in order to work. I want a small and powerful arm chip which I can integrate INTO my own PCBs and the Teensy does not easily or cheaply allow this. The Blue Pill and it’s derivatives appear to be just the thing I need!

See the full post at lostengineer.com.

Overdrive guitar effects pedal

pstomp-600

Eddie over at Bantam Tools shared detailed instructions of how to build this DIY overdrive effects pedal:

This project shows you how to make your very own effects stompbox! We’ll go through the steps of downloading the .brd file, loading the file into our software, milling the board on the Bantam Tools Desktop PCB Milling Machine, and soldering the components. This is a great tutorial for those new to milling printed circuit boards (PCBs) or for those who want practice soldering components to the board as a part of a larger assembly.

More info at Bantam Tools project page.

How to: STM32F103C8T6 as an USB device (Virtual serial port / CDC)

In this video Hugatry shared detailed instructions of how to use the STM32F103C8T6 as an USB device with virtual serial port:

Cheap STM32F103C8T6 development board
Blue STM32F103C8T6 development boards, also known as “BluePill”, are cheap way to get started with 32bit ARM microcontrollers. The STM32 development board can sometimes be bought for less than $2 and ST-LinkV2 compatible programmer and debugger doesn’t cost much more than that either.
The STM32F103C8T6 has nice amount of flash and RAM, runs at 72MHz and best of all: It has built-in USB. It is possible to program these STM32 boards to act as an USB devices, without “FTDI chip”. In this post and in the embedded video I will teach step by step how to use the STM32F103C8T6 as an USB device, in particular a virtual serial port.

More details at Hugatry’s HackVlog.

Tutorial, experiments and teardown of a 77GHz automotive FMCW radar module

Radar-300x167

Tutorial, experiments and teardown of a 77GHz automotive FMCW radar module from The Signal Path:

In this episode Shahriar explores the principle operation of automotive FMCW radars. Thanks to a donated automotive radar module, various components of the system can be examined and explored. The PCB reveals three die-on-PCB ASICs responsible for generating and receiving 77GHz FMCW signals coupled to a 2D array of antennas. Several microwave components such as rat-race couplers and branchline couplers can also be observed. PCB rulers from SV1AFN Design Lab also show these microwave components at much lower frequencies. Two other ICs are used for ramp generation and PLL as well as a multi-input LNA/PGA/AAF with 12-bit ADC for IF processing. All components are examined under the microscope and the frequency of operation is calculated by measuring the branchline coupler’s dimensions.
Finally a simple Doppler effect radar is constructed by using a doubler, power divider, mixer and a pair of Vivaldi horn antennas. The Doppler effect can be observed by moving an object in front of the antenna pair.

More details at thesignalpath.com.

Check out the video after the break.