App note: Overture series high power solutions

Overture Application Note AN-1192

This application note (PDF) from TI discusses the different aspects of the Overture series high-power solutions, and discusses three application circuits: parallel, bridged, and bridged/parallel configurations

The objective is to provide simple high-power solutions that are conservatively designed, highly reliable and have low part count. This document provides three specific, but not unique, application circuits that provide output power of 100W, 200W,
and above. These circuits are the parallel, bridged, and bridged/parallel configurations.
These three circuits are simple to understand, simple to build and require very few external components compared
to discrete power amplifier designs. Simplicity of design and few components make this solution much more reliable than discrete amplifiers. In addition, these circuits inherently possess the full protection of each individual IC that is very difficult and time consuming to design discretely. Finally, these circuits are well know and have been in industry for years.

App note: Software phase locked loop design using C2000 Microcontrollers for single phase grid connected inverter



This application note (PDF!) from TI details the design of Single Phase PLL:

Grid connected applications require an accurate estimate of the grid angle to feed power synchronously tothe grid. This is achieved using a software phase locked loop (PLL). This application report discusses different challenges in the design of software phase locked loops and presents a methodology to design phase locked loops using C2000 controllers for single phase grid connection applications.

App note: High voltage adjustable power supplies



TI application note (PDF!) on high voltage adjustable power supplies:

An improved approach is shown in Figure 2. Here an LM329B 6.9V zener reference has been stacked in series
with the LM317’s internal reference. This both improves temperature stability, since the LM329B has a guaranteed TC of ±20 ppm/˚C, and improves regulation, because more loop gain is available from the LM317.
These techniques can be extended for higher output voltages and/or currents by either using better high voltage transistors or cascoding or paralleling (with appropriate emitter ballasting resistors) several transistors. The output short circuit current, determined by R3, must be within Q2’s safe area of operation so that secondary breakdown cannot occur.