Tool battery teardowns: Craftsman 19.2V and Ridgid 12V

DSCF8120

Russell Graves did teardown of a Craftsman 19.2V DieHard battery and a Ridgid 12V battery:

It’s time for more tool battery teardowns!  This week, I’ve got a Craftsman 19.2V DieHard battery, and a cute little Ridgid 12V battery.  They’re both lithium, and I’m going to dig into both of them, because that’s what I do with old batteries I pick up out of junk bins.
If you’re bored of tool battery teardowns, you could always send me more interesting things to mess with!  I enjoy poking around tool batteries, and a lot of the ones I pull apart are “new to the internet” in that they haven’t had a detailed teardown before.   It’s always interesting to see how different companies approach much the same problem.

More details on Syonyk’s Project blog.

Tutorial, experiment and teardown of a 24GHz Doppler radar module

CDM324-e1534131460412

Shahriar posted a detailed analysis of a CDM324 24GHz Doppler radar module from IC Station:

Opening the module reveals a series of microwave PCB components and several active devices. A complete analysis of the module is presented. The unit is then measured and the impact of antenna impedance and power supply voltage on the output frequency is measured. The phase noise of the output signal is also measured. Using a series of servo motors, the radiation pattern of the antenna array in both azimuth and elevation is also presented.

More details on The Signal Path blog.

Check out the video after the break.

Inside a Datum 9300 time code generator

Datum9300front-600

Kerry Wong did a teardown of a Datum 9300 time code generator:

IRIG time code generators (not to be confused with the ones used in video and film industry) are often used for clock synchronization among various connected equipment and is commonly used in power generation and distribution industry as well as in the military. In this blog post we will take a look inside a Datum 9300 time code generator from the late 80’s. A video detailing the teardown is linked towards the end of the post.

See the full post on his blog here.

Check out the video after the break.

Electronic key tear down

dallas_top-600

Tear down of an Electronic key  from Electronupdate:

In the mid 1980’s a company called Dallas Semiconductor was producing a wide range of small RAMs with integrated battery backup. One of the more unusual item was an early attempt at an electronic key: a user would be issued a key which could then be typically used to allow access to equipment and to keep track of usage. Not very secure by today’s standards…. but an interesting data point.
Opening it up shows that it had two major parts: a silicon die and a battery. The amount of ram on the die was very small, 256 bits!

More details on Electronupdate blog.

Check out the video after the break.

Teardown of an MVMT dual USB port wall outlet adapter

MVMTUSBOutlets-600

Kerry Wong did a teardown of an MVMT dual USB port wall outlet adapter:

Specification wise, the adapter is rated to provide 2.1A for its USB output. I did some load testing with an electronic load I built before and it appeared that the 2.1A is rated for the combined output from both USB ports. You can see my testing in the video linked towards the end of this post. This means that if you are charging two devices using this adapter, charging time will be lengthened as the 2.1A output current has to be shared between the two channels.
The internal build quality of this MVMT USB adapter is actually quite good. Two PCBs are used in this adapter. One is for surge protection and the other one is for the switching power supply that generates the 5V output rails.

See the full post on his blog here.

Check out the video after the break.

Siglent SDG6000X Series Arbitrary waveform generator review, teardown and experiments

SDG6000X-300x149

A closer look at the newly released Siglent SDG6000X Series Arbitrary Waveform Generator from The Signal Path:

The full teardown of the unit reveals the internal architecture of the instrument, DAC / FPGA interconnect as well as the output amplifier structure. Although the limitations of the FPGA prevents the instrument to operate at full 2.5GSa/s in arb-mode, the instrument is capable of providing complex modulation up to the full 500MHz signal bandwidth.

More details on The Signal Path blog.

Check out the video after the break.

Teardown of a GM3120 electromagnetic radiation tester

GM3120-600

Kerry Wong did a teardown of a cheap GM3120 field strength meter:

There are a lot of cheap electromagnetic radiation testers out there which boast some quite impressive claims. So I decided to pick up a popular one (GM3120) from eBay to see how well it works. And perhaps more importantly, I wanted to take a look inside to see how the E field and H field sensing is done.
Most professional field strength meters feature a dome-like sensor. Housed inside are three orthogonally arranged antennas used for picking up field component in that axis. A cheap tester like the GM3120 clearly doesn’t utilize this kind of sensor topology and presumably can only discern field strength along a single axis.

See the full post on his blog here.

Check out the video after the break.

DEC PDP 11 / 24 CPU CARD: State of the art design from 1979

p-high_res_all-600

DEC PDP 11/24 CPU card teardown from Electronupdate:

This is a cpu card from a class of computers known as mini-computers.
By the late 1970’s DEC was about to be eclipsed by the microcomputer. At the same time this card was in production the 68000 and 8086 16-bit class micro processors were also in the market: their superior cost would soon take much of DEC’s low end market.
The card uses their FONZ-11 LSI chip set. Most interestingly the CPU instructions are micro-coded and placed into separate chips: the instruction set could be expanded at will by adding more “303E”s. Typically this would be for a floating-point instruction set.

More details at Electronupdate blog.

Check out the video after the break.