Arduino Clock Is HAL 1000

In the movie 2001: A Space Odyssey, HAL 9000 — the neurotic computer — had a birthday in 1992 (for some reason, in the book it is 1997). In the late 1960s, that date sounded impossibly far away, but now it seems like a distant memory. The only thing is, we are only now starting to get computers with voice I/O that are practical and even they are a far cry from HAL.

[GeraldF6] built an Arduino-based clock. That’s nothing new but thanks to a MOVI board (ok, shield), this clock has voice input and output as you can see in the video below. Unlike most modern speech-enabled devices, the MOVI board (and, thus, the clock, does not use an external server in the cloud or any remote processing at all. On the other hand, the speech quality isn’t what you might expect from any of the modern smartphone assistants that talk. We estimate it might be about 1/9 the power of the HAL 9000.

You might wonder what you have to say to a clock. You’ll see in the video you can do things like set and query timers. Unlike HAL, the device works like a Star Trek computer. You address it as Arduino. Then it beeps and you can speak a command. There’s also a real-time clock module.

Setting up the MOVI is simple:

 recognizer.init(); // Initialize MOVI (waits for it to boot)
 recognizer.callSign("Arduino"); // Train callsign Arduino (may take 20 seconds)
 recognizer.addSentence(F("What time is it ?")); // Add sentence 1
 recognizer.addSentence(F("What is the time ?")); // Add sentence 2
 recognizer.addSentence(F("What is the date ?")); // Add sentence 3

Then a call to recognizer.poll will return a numeric code for anything it hears. Here is a snippet:

// Get result from MOVI, 0 denotes nothing happened, negative values denote events (see docs)

 signed int res = recognizer.poll(); 

// Tell current time
 if (res==1 | res==2) { // Sentence 1 & 2
 if ( now.hour() > 12) 
 recognizer.say("It's " + String(now.hour()-12) + " " + ( now.minute() < 10 ? "O" : "" ) +
     String(now.minute()) + "P M" ); // Speak the time

Fairly easy.

HAL being a NASA project (USSC, not NASA, and HAL was a product of a lab at University of Illinois Urbana-Champaign – ed.) probably cost millions, but the MOVI board is $70-$90. It also isn’t likely to go crazy and try to kill you, so that’s another bonus. Maybe we’ll build one in a different casing. We recently talked about neural networks improving speech recognition and synthesis. This is a long way from that.

Filed under: Arduino Hacks, clock hacks

A DIY, Visual Alexa

Talking to computers is all the rage right now. We are accustomed to using voice to communicate with each other, so that makes sense. However, there’s a distinct difference between talking to a human over a phone line and conversing face-to-face. You get a lot of visual cues in person compared to talking over a phone or radio.

Today, most voice-enabled systems are like taking to a computer over the phone. It gets the job done, but you don’t always get the most benefit. To that end, [Youness] decided to marry an OLED display to his Alexa to give visual feedback about the current state of Alexa. It is a work in progress, but you can see two incarnations of the idea in the videos below.

A Raspberry Pi provides the horsepower and the display. A Python program connects to the Alexa Voice Service (AVS) to understand what to do. AVS provides several interfaces for building voice-enabled applications:

  • Speech Recognition/Synthesis – Understand and generate speech.
  • Alerts – Deal with events such as timers or a user utterance.
  • AudioPlayer – Manages audio playback.
  • PlaybackController – Manages playback queue.
  • Speaker – Controls volume control.
  • System – Provides client information to AVS.

We’ve seen AVS used to create an Echo clone (in a retro case, though). We also recently looked at the Google speech API on the Raspberry Pi.

Filed under: Raspberry Pi

Raspberry Pi Want a Cracker?

If you watch the old original Star Trek, you’ll notice that the computers on board the Enterprise don’t look much like our computers (unless you count the little 3.5 inch floppies that looked pretty close to the real thing). Then again, the Enterprise didn’t need keyboards and screens since the computers did a pretty good job of listening and speaking to humans.

We aren’t quite to the point where you can just ask the computer some fuzzy open-ended question like Captain Kirk did, but we do have things like Echo, Siri, and Google Now that do a fair job of listening to you and replying. In fact, Google provides an API that can do speech recognition and generation. [Giulio] used some common Python libraries to add speech I/O to a Raspberry Pi.

The example he shows is a virtual parrot. Of course, you could do that entirely with audio, but the way [Giulio] did it, the parrot generates strings of text and then speaks them. So it isn’t hard to imagine processing the text in some way.

Of course, there are hardware options. Or, snag an Alexa and see if you can snag a few million dollars in prizes.

Filed under: Raspberry Pi