App note: Gate-source voltage behaviour in a bridge configuration

an_rohm_sic-mosfet_gate-source_voltage_an-e

App note from ROHM semiconductor on MOSFETS and IGBTs. Link here (PDF)

Power switching devices such as MOSFETs and IGBTs are used for various kinds of power supply applications, power supply line switching components, and other power applications. In addition, the circuit topologies used are diverse, parallel and series connections are widely used, not to mention single device use. Especially in bridge circuit configuration, in which the devices are connected in series, it is common to turn on and turn off each device alternately. Due to the current flowing and the voltage change in each device, the devices greatly affect one another. In this application note, we focus on Gate-Source voltage in MOSFET bridge configuration based on one of the simplest power circuits, a synchronous rectification boost converter to understand the switching operation in detail.

App note: Application of SiC MOSFETs

an_on_AD9691-D

App note from ON Semiconductors about Silicon Carbide MOSFETs, their difference and gains over Silicon MOSFETs. Link here (PDF)

Among the Wide Band Gap materials silicon carbide (SiC) is by far the most mature one. The raw wafer quality has greatly improved over the last years with significant reduction of micro pipes and dislocations. Silicon carbide devices can work at high temperatures, are very robust and offer both low conduction and switching losses. The high thermal conductivity makes SiC also a perfect choice for high power applications, when good cooling is required. Compared to silicon switches, silicon carbide MOSFETs inherit some specific characteristics like the shift of gate threshold a designer should be aware of. This effect will be explained in this application note.