RTC based automatic LED lamp

rtc-light-prototype-final-600

Dilshan Jayakody published a new build:

This is real-time clock based automatic LED lamp which we originally designed to use as night light. This lamp can programmed to turn on and off at the specific time of the day. For example, it can program to turn on at 6 PM on each day and to turn off at 4 AM next day.
The core component of this project is PIC16F883 MCU and it’s firmware is developed using MikroC Pro for PIC. We select this MCU because of it’s 7 KB flash memory, I2C, UART, E2PROM and built-in 8-bit and 16-bit timers.

See the full post on his blog.

Tiva and Stellaris Launchpad RTC usage in Energia

pics-stellaris-600

Vadim has posted a tutorial on how to use internal RTC of Stellaris and Tiva Launchpad boards in Energia IDE:

For those of you who still have one of those old Stellaris Launchpads, I’m going to show how to utilize one of its most useful features – real time clock – in a simple way. Actually, the Hibernation module is the same in the new Tiva Launchpad, so it’s supposed to work there as well.

More info at Vadim Panov’s blog.

Via the contact form.

Keep an Old Real Time Clock Module Ticking

Sometimes we run into real problems restoring old machines. [RedruM69] recently ran into a system with a dead Real Time Clock (RTC) module. These modules were used on computers and all sorts of other equipment, storing time, date, and 100 or so bytes of battery backed SRAM (before the days of cheap, plentiful flash memory). Often an external coin cell would supply power to the module. In some cases though, cost savings would take over, and the battery would be incorporated into the module. Such is the case with many Dallas Semiconductor models, and the benchmarq bq3287 module [RedruM69] was working with. If we’re reading the date code right, the module was produced in mid 1995 so we’re well past the advertised 10 year battery life.

Apparently Texas Instruments is the current owner of this design, and they even have a datasheet online. (PDF link). It turns out that the bq3287 is a descendant of the bq3285, except that the battery pin is internally disconnected. For most people this would mean a search for a compatible replacement. An industrious hacker might even whip up something compatible from modern components. Not [RedruM69] though. He broke out his Dremel tool and cut into the potted case. Exposing the internal connections above pins 16 and 20 allowed him to solder two wires on. Connecting these wires to an external coin cell brought the module back to life.

[RedruM69] isn’t the first one to perform this hack. Sun computers kept their MAC address in chips like this. When the battery went dead, the computer was off the network. Hackers have been cutting the modules open and adding batteries for years. You could always forgo RTC modules completely and use the power grid as your timebase.


Filed under: classic hacks