App note: How to eliminate over stress of MOSFET during start-up of flyback converter

an_richtek_an010

App note from Richtek about their embedded soft-start function to eliminate MOSFET stress. Link here

Switching Power Supply, compared to Linear Power Supply, is widely used due to its advantages, such as small size, light weight, high efficiency, etc. Flyback Converter, one of the switching power supply topologies, is most suitable for power supply systems that are below 150W because of its unique features of isolation between primary and secondary sides, simple circuit architecture, few components, low cost, etc.

Since switching power MOSFETs play a very important role in switching power supply converters, how to effectively eliminate over-stress of MOSFET during the start-up of flyback converters will be the main focus to be discussed in this application note. The three major aspects to be investigated are flyback controller design, feedback stability, and Snubber design.

App note: Minimizing light flicker in LED lighting applications

an_richtek_an022

Another application notes from Richtek this time on LED lamps flickering. Link here

Applying LEDs in offline retrofit lamps seems straightforward, but should be done with care to achieve similar light quality as the conventional lamp that the user is trying to replace. Light flicker is one of the aspects that need to be considered carefully during LED lamp design to avoid customer complaints from the field. This application note explains the LED lamp flicker phenomena in relation to driver topology and LED characteristics, and provides solutions based on several Richtek LED drivers in combination with specific LED strings. A practical flicker measurement method is explained as well, that can be used to measure light flicker in LED lamps.

App note: Li-ion battery and gauge introduction

an_ricktek_an024

Richtek app note for Li-ion battery definitions and gauge introduction. Link here

SOC is defined as the status of available energy in the battery and usually expressed as percentages. Because the available energy change depends on different charging/discharging currents, temperatures and aging effects, the SOC could be defined more clearly as ASOC (Absolute State-Of-Charge) and RSOC (Relative State-Of-Charge). Typically, the range of RSOC is from 0% to 100%, a fully charged battery’s RSOC is always 100% and a fully discharged battery has 0% RSOC. The ASOC is a reference calculated by Design Capacity which is a fixed capacity from when the battery is manufactured. A fully charged new battery will have 100% ASOC, but a fully charged aging battery could be less than 100% because of different charge/discharge conditions.

Battery management is part of power measurement. The fuel gauge is responsible to estimate the capacity of battery in the domain of battery management. The basic function of fuel gauge is to monitor the voltage, charge/discharge current and battery temperature, and to estimate the battery’s SOC and Full Charge Capacity (FCC) of battery. There are two classic methods to do the SOC estimation which are Open Circuit Voltage (OCV) and Coulomb Counter, respectively. The other method is dynamic voltage-based algorithm designed by RICHTEK.

App note: The reduction of input voltage spike on power switches

an_richtek_an001

Another app note from Richtek introducing solutions for reducing the input voltage spike on power switches. Link here

The power switch is a low voltage, single N-Channel MOSFET high-side power switch, optimized for self-powered and bus- powered Universal Serial Bus (USB) applications.

In worse operating condition, an input voltage spike may over the chip’s maximum input voltage specification to damage the chip.

App note: Analyzing VIN overstress in power ICs

an_richtek_an048

Investigative app note from Richtek about the component failure point caused by EOS. Link here (PDF)

Failures in power ICs are often the result of Electrical Over Stress (EOS) on the IC input supply pin. This report explains the structure of power IC input ESD protection and how ESD cells can become damaged due to EOS. Common causes for input EOS are hot-plug events and other transient effects involving wire or trace inductance in combination with low ESR ceramic capacitors. Solutions are presented how to avoid EOS via special circuit and system design considerations.

App note: DC/DC converter testing with fast load transient

an_richtek_an038

Another app note from Richtek, this time about transient load testing on power converters and how you can make a simple and low cost fast transient tool. Link here (PDF)

Load transient testing is a quick way to check power converter behavior on several aspects: It will show the converter regulation speed and can highlight loop stability problems. Other power converter aspects like input voltage stability, slope compensation issues and layout problems can be quickly spotted as well. This application note will explain the practical use of load transient testing to diagnose DC/DC power converter problems.

App note: RT2875 3A automotive buck converter

an_richtek_an047

An application note from Richtek on buck converter used in automotive application. Link here (PDF)

Automotive environment can be quite harsh and designing electronics that need to work reliable in this environment takes special care, and often requires automotive qualified parts.

When designing voltage regulators that need to step down an intermediate voltage from the car battery supply, the car battery voltage fluctuation needs to be taken into regard.

The full operating temperature range needs to be considered for all aspects of the design, and all component parameters have to be checked over temperature.

The car radio receiver is nearby, which means that any switch-mode converter radiated emission needs to be minimized to avoid switch noise being coupled into the car radio receiver.

App note: Designing applications with Lithium-Ion batteries

an_richtek_an025

More Li-ion battery applications from Richtek. Link here (PDF)

Lithium-Ion batteries have several advantages when compared with other battery types: They are light weight, and energy density of lithium-ion is typically twice that of the standard nickel-cadmium. Li-Ion batteries have no memory effect, and the self-discharge is 6 ~ 8 times less compared to nickel-cadmium. The high cell voltage of 3.6 volts is often sufficient to power applications from a single cell. These properties make Li-Ion batteries very popular in modern portable electronic applications.

App note: Switching battery chargers

an_ricktek_an050

App note from Richtek about several aspects of switching chargers for single cell Li-Ion batteries. Link here (PDF)

Longer battery life and shorter charging times are some of the challenges in battery management in modern hand-held applications like Smart-Phones, Tablet PCs, POS and other portable equipment.

Devices with powerful processors are more power hungry and require larger capacity batteries to guarantee battery life. To quickly charge large capacity batteries, powerful high current chargers are needed. Linear chargers have too limited charge current capability for this purpose, so switching charger topology has to be adopted.