DIY custom power supply

2018-10-15-18.54

Anthony Lieuallen made this custom power supply and wrote a post on his blog detailing its assembly:

You might not truly be an electronics nerd until you build your own power supply. Either way, I’ve finally passed that threshold. As I’ve mentioned previously (and previouslier), I’ve been working on mine — very slowly, off and on — for most of a year. The bare start came with a guide posted to Hackaday about using nichrome wire to heat and bend acrylic plastic in straight lines, to make cases.

More details at Arantius.com.

Inside a two-quadrant power supply – Agilent 66312A teardown and experiment

Agilent66312A

Kerry Wong did a teardown of an Agilent 66312A dynamic measurement DC source:

Typically, a lab power supply can only operate within a single quadrant. Take a positive voltage power supply for example, it can only output or source current. If any attempt is made trying to sink current into the power supply by connecting a voltage source with a higher voltage than the output voltage of the power supply, the power supply would lose regulation since it cannot sink any current and thus is unable to bring down and regulate the voltage at its output terminals.
The Agilent 66312A dynamic measurement DC source however is a two-quadrant power supply, it not only can source up to 2A of current between 0 and 20V, but also can sink up to 1.2A or 60% of its rated output current as well. Although lacking some key functionality of a source measure unit (SMU), Agilent 66312A can nevertheless be used in similar situations where both current sourcing and sinking capabilities are needed.

More details on Kerry Wong’s blog.

Check out the video after the break.

Glowing mercury thyratrons: Inside a 1940s Teletype switching power supply

glowing-tubes

Ken Shirriff take a look inside a bulky DC power supply REC-30 rectifier, how it works and contrast it with a MacBook power supply:

We recently started restoring a Teletype Model 19, a Navy communication system introduced in the 1940s.14 This Teletype was powered by a bulky DC power supply called the “REC-30 rectifier”. The power supply uses special mercury-vapor thyratron tubes, which give off an eerie blue glow in operation, as you can see below.
The power supply is interesting, since it is an early switching power supply. (I realize it’s controversial to call this a switching power supply, but I don’t see a good reason to exclude it.) While switching power supplies are ubiquitous now (due to cheap high-voltage transistors), they were unusual in the 1940s. The REC-30 is very large—over 100 pounds—compared to about 10 ounces for a MacBook power supply, demonstrating the amazing improvements in power supplies since the 1940s. In this blog post, I take a look inside the power supply, discuss how it works, and contrast it with a MacBook power supply.

See the full post on Ken Shirriff ‘s blog.

Amiga 500 power supply build

PowerSupplyBuild

A how-to on building an Amiga 500 power supply from Inkoo Vintage Computing:

The power supply of my Amiga 500 is a bit unreliable. I’ve had some issues with the machine where the PSU could be the culprit, so I thought that it would be better to get a new power supply. There are used Amiga 500 power supplies occasionally available on online auctions, and there are also unused (but probably quite old) power supplies available on some online retailers. The issue with these 20-30 year old power supplies is that the capacitors are starting to dry. This can be a fire hazard, as old capacitors may even explode (this has happened to the PSU of my old IBM XT, it was not a pleasant experience). So in order to get safe and reliable operation from an old PSU, the capacitors should be replaced.

More details on Inkoo Vintage Computing homepage.

DC/DC switcher for 5v TO 3v at 750mA in a TO-220 7805 footprint

img_1948

An open source small DC/DC 3W switcher to drop 5V to 3V in a 7805 TO-220 pinout from Black Mesa Labs:

This post is an open source hardware design from Black Mesa Labs for a simple DC/DC converter for dropping 5V to 3.3V ( or adjustable to lower voltages via resistor selections ). The design is based on the PAM2305 from Diodes Incorporated, a great little 1 Amp step-down DC-DC converter in a small TSOT25 package. The PAM2305 supports a range of input voltages from 2.5V to 5.5V, allowing the use of a single Li+/Li-polymer cell, multiple Alkaline/NiMH cell, USB, and other standard power sources. The output voltage is adjustable from 0.6V to the input voltage.

More details at Black Mesa Labs site.

Optimizing the 5v to 170v Nixie tube power supply design (part 2)

p-img_5710-1-600

Mark Smith has a nice write-up on optimizing the 5v to 170v Nixie tube power supply:

Since this power supply is just a fun design for an upcoming Nixie tube clock project of mine, I have the time to achieve ESE. While in Part 1 I described the equations and simulations, in this Part 2, I collected experimental results to complete the design. In the process of finalizing the design, I was able to discover a couple of key design improvements and I’ll share these changes with you. The updated schematic, BOM, Kicad Layout, and design files are located at Github.

Via surfncircuits.

App note: Measuring inrush current

an_aimtec_inrush

Inrush current evaluation from Aimtec. Link here

In AC/DC power converters beyond a few watts, during the initial application of power an excessive inrush current will flow when the input capacitors are suddenly charged. If unhindered the inrush current can easily exceed 50 A at the peak of the AC cycle and severely stress the converter’s fuse and input rectifiers, thereby significantly reducing the reliability and life expectancy of the modules. Universal power supplies (supplies which accept a wide range of input voltages) are particularly susceptible to high inrush current since their input capacitors must be large enough to handle line voltages as low as 110 VAC, as well as voltages as high as 305 VAC at start-up. In these environments, a power-supply failure or a tripped circuit breaker can be inconvenient at best, and expensive or dangerous at worst.

App note: Choose the right power supply for your FPGA

an_maxim_an5447

Designing a power supply for FPGA includes multiple voltage, ripple management and power sequencing, here’s an app note from Maxim Integrated. Link here (PDF)

Field-programmable gate arrays (FPGAs) and complex programmable logic devices (CPLDs) require 3 to 15, or even more, voltage rails. The logic fabric is usually at the latest process technology node that determines the core supply voltage. Configuration, housekeeping circuitry, various I/Os, serializer/deserializer (SerDes) transceivers, clock managers, and other functions all have differing requirements for voltage rails, sequencing/tracking, and voltage ripple limits. An engineer must consider all of these issues when designing a power supply for an FPGA.

Teardown of a BK precision 1696 programmable switching power supply

image1

Kerry Wong did a teardown of a BK Precision 1696 programmable switching power supply:

My original plan was to find a replacement LCD and restore the unit to its original full functionality. But the LCD used in this unit is likely specifically made for the 169X series of power supplies and through some initial research I realized it would be extremely difficult to get hold of unless I could find a donor unit with a functional LCD inside. After I received the power supply, I realized that it had more issues than just the broken LCD itself. During my initial testing, I found that the output would not reach higher than 10 to 11 volts even with the over voltage protection set to the maximum value (20.5V). So clearly I have more homework to do, and for the time being let’s simply strip it down and see what’s inside.

See the full post on his blog.

Check out the video after the break.