Wavecatcher

IMG_4753-600

Anfractuosity published a new build:

“Acoustic cryptanalysis is a type of side channel attack that exploits sounds emitted by computers or other devices”

Wavecatcher is a simple PCB that makes use of a MEMS ultrasound microphone, in order to capture audio to around 80kHz, with the goal
of finding interesting ultrasound sources and playing with exfiltrating data from SMPSs etc. via ultrasound.

See the full post on Anfractuosity’s project page and the GitHub repository here.

StyloCard

stylo6-600

Stylophone business card project from mitxela.com

Printed Circuit Boards as a business card are a great gimmick. I’d seen ones with USB ports etched into them, which enumerate as a keyboard and then type a person’s name or load up their website. It’s just about possible to build them cheap enough to hand out as a business card, at least if you’re picky about who you give them to.
A couple of years ago I took a stab at making one for myself, but I didn’t want it to be pointless. I wanted it to do something useful! Or at least entertain someone for longer than a few seconds. I can’t remember quite how I got the idea of making a MIDI-stylophone, but the idea was perfect.

More info at mitxela.com.

Check out the video after the break.

10MHz distribution amplifier

p-10mhz_pcb_top-600

G4FRE built a 10MHz distribution amplifier:

I have had a need for a distribution amplifier for a while now. Searching around I found the design by G4JNT in Radcom, which filled my needs. I redrew the circuit for 4 outputs and had PCBs made. (if you want one contact me!)  I now have the units in my M1DST 10MHz Thunderbolt monitoring project and in my LPRO101 10MHz Rubidium source.

See the full post on his blog here.

DIY Arduino PCB Pryamiduino

pryamdiuino-r1-and-apple-remote

A how-to on designing a DIY Arduino PCB Pryamiduino from Bald Engineer:

Continuing the DIY Arduino tutorial series, this AddOhms episode shows how to create a PCB in KiCad. I make a joke that the original design was a rectangle, which I found boring and pointless. So instead, I designed a triangle to give the board 3 points. Get it? Puns! I am calling it the Pryamiduino. To be honest, I found not having a constraint to be a problem. By forcing a specific board size and shape, many decisions were more manageable.

More details at Bald Engineer’s blog.

Check out the video after the break.

Small motor controller with integrated position sensor

pdouble_board-600

Ben Katz writes:

A while ago I added the hall effect encoder IC I’ve been using directly to the motor controller PCB.  The controller sits directly on the back of the motor (with a magnet added to the motor shaft), and the phase wires solder straight in.  I also have a pair of board-mounted XT30 connectors on the DC bus for easy daisy-chaining.  Otherwise, the board is basically identical to the previous version of this controller.  I’ve now built over a dozen of these, and have had no problems.

See the full post on BuildIts in Progress blog.

Open source 22mm diameter PCB project

22mmstack

An open source 22mm diameter PCB project from Concretedog, that is available on github:

So I posted a while back about how I had used these 22mm pcb’s I’d made in prototyping an ematch ignitor system for use in rocketry. Although I made these stackable boards so they would fit inside a popular size of Estes rocket body tube I’m aware that they are quite useful for lots of things. So i’ve open sourced them so anyone can get some made, or add improve or change them.
There are three boards,an Attiny85 board with some power LED and indicator LED, a SOT89 power supply board which could be built up with either a 3.3v or a 5v supply. Finally there is a “kludge” board which is useful for adding in some thru hole components into the system. Some quick pics here but in the files on Git each board is well documented in a pdf. All the dust components are 0805 so super accessible for hand SMD soldering. :)

See the full post at Concretedog blog.

DIY through hole plating of PCBs

DSC_1176-600

Jan Mrázek documented his experience experimenting with DIY through-hole plating of PCBs:

I’ve been thinking about though hole plating for several years. The general procedure is simple – you have to activate non-copper surfaces (make them conductive) and then you apply standard electroplating procedure. You can find many tutorials on the internet, however, most of the require hard-to-get chemicals for the activation solution. Few weeks ago, I noticed that the local electronic component supplier had started to sell Kontakt Chemie Graphit – a conductive paint. It’s basically a colloidal graphite in an organic solution. It is supposed to be used for making surfaces conductive to prevent static electricity discharges. This could be perfect for activation of the non-copper surfaces! So I gathered all the necesery chemicals and equipment and made a test run.

More info at mind.dump() blog.

PICKit 3 Mini

picture-img_1051-600

Reviahh has published a new build, the PICKit 3 Mini:

Previously, I made a Pickit 3 clone – (see previous blog post). It works well, but I have often wondered just how little of its circuitry was needed to program and debug the boards I make. For instance – I primarily use the newer 3.3V PIC32 processors, so I really don’t need the ability to alter the voltage like the standard Pickit 3 can. I also have no real need for programming on the go, or even to provide power to the target MCU to program. Knowing this – I decided to see what I could do to remove the circuitry I didn’t need, yet still have a functioning programmer/debugger.

See the full post at DIY PCB homepage.