App note: Adding flexibility by using multiple footprints for I2C™ serial EEPROMs

an_microchip_an1418

Save PCB space by utilizing EEPROM SOIC-8 area, here’s an application note from Microchip. Link here (PDF)

For many years, the 8-lead SOIC package has been the most popular package for serial EEPROMs, but now smaller packages are becoming more commonplace. This offers a number of benefits; the reductions in footprint size and component height are some of the more obvious ones. Smaller packages also generally offer a cost advantage over their larger counterparts.

App note: Writing to flash and EEPROM on the tinyAVR 1-series

an_microchip_an1983

Update your tinyAVR code to access memories when using 1-series tinyAVRs. Link here (PDF)

On tinyAVR® 1-series devices, access to Flash memory and EEPROM has been changed from that on previous tinyAVR devices. This means that existing code for writing to Flash and EEPROM on older devices must be modified in order to function properly on tinyAVR 1-series devices. This application note describes what has changed and how to adapt code to these changes.

App note: Grid-connected solar microinverter reference design

an_microchip_an1444a

A good read from Microchip on the theory behind inverter design connected to grip power. Link here (PDF)

There are two main requirements for solar inverter systems: harvest available energy from the PV panel and inject a sinusoidal current into the grid in phase with the grid voltage. In order to harvest the energy out of the PV panel, a Maximum Power Point Tracking (MPPT) algorithm is required. This algorithm determines the maximum amount of power available from the PV module at any given time. Interfacing to the grid requires solar inverter systems to abide by certain standards given by utility companies. These standards, such as EN61000-3-2, IEEE1547 and the U.S. National Electrical Code (NEC) 690, deal with power quality, safety, grounding and detection of islanding conditions.

App note: Multiple Capture/Compare/PWM (MCCP): Extending the functionality for low-cost motor control applications

ap_microchip_tb3152

Microchip’s MCCP module on PIC32 devices demonstrate the built-in majority detection filter for simpler motor control drives. Link here (PDF)

The motor control industry has been focusing on designing low-cost motor control drives for various applications. The consumer demand for low-cost motor control applications is driving this trend.

Microchip has recently introduced the PIC32MM family of microcontrollers, which is capable of addressing the low-cost motor control requirements. The low-cost solution benefits from the capability of the Multiple Capture/Compare/PWM (MCCP) module available in Microchip’s PIC32MM controllers. This document
illustrates the usage of the MCCP module in the PIC32MM0064GPL036 controller, from Microchip Technology, to deliver a development platform for motor drive applications.

MCCP implementation, similar to the motor control solution discussed in this document, can also be extended to Microchip’s PIC24 and dsPIC33 family of devices which feature MCCP.

App note: IR remote control transmitter

application

IR remote control transmitter application note (PDF!) from Microchip:

This application note illustrates the use of the PIC10F206 to implement a two-button infrared remote controller. The PIC10F2XX family of microcontrollers is currently the smallest in the world, and their compact sizes and low cost make them preferable for small applications such as this one.
Two example protocols are shown. The first is Philips® RC5, and the second is Sony™ SIRC. These two protocols were chosen because they are fairly common and their formats are well documented on professional and hobbyists’ web sites. They also demonstrate two differing schemes for formatting the transmission.

App note: Using the Configurable Logic Cell (CLC) to interface a PIC16F1509 and WS2811 LED driver

apps1

An application note (PDF!) from Microchip on how to use CLC to interface a PIC16F1509 and WS2811 LED driver:

The Configurable Logic Cell (CLC) peripheral in the PIC16F1509 device is a powerful way to create custom interfaces that would otherwise be very difficult. One example is the single-wire PWM signal, used by the WS2811 LEDs, well known in LED video display systems. This application note will provide a simple demonstration of a WS2811 LED Strip driver.

Arduino with a… PIC?

Before the Arduino took over the hobby market (well, at least the 8-bit segment of it), most hackers used PIC processors. They were cheap, easy to program, had a good toolchain, and were at the heart of the Basic Stamp, which was the gateway drug for many microcontroller developers.

[AXR AMR] has been working with the Pinguino, an Arduino processor based on a PIC (granted, an 18F PIC, although you can also use a 32-bit device, too). He shows you how to build a compatible circuit on a breadboard with about a dozen parts. The PIC has built-in USB. Once you flash the right bootloader, you don’t need anything other than a USB cable to program. You can see a video of this below.

You will need a programmer to get the initial bootloader, but there’s plenty of cheap options for that. The IDE is available for Windows, Linux, and the Mac. Of course, you might wonder why you would use a PIC device instead of the more traditional Arduino devices. The answer is: it depends. Every chip has its own set of plusses and minuses from power consumption to I/O devices, to availability and price. These chips might suit you, and they might not. That’s your call.  Of course, the difference between Microchip and Atmel has gotten less lately, too.

We’ve covered Pinguino before with a dedicated board. If you never played with a Basic Stamp, you might enjoy learning more about it. If you’re looking for more power than a PIC 18F can handle, you might consider the Fubarino, a PIC32 board you can use with the Arduino IDE.


Filed under: Arduino Hacks, Microcontrollers

What’s The Deal With Atmel And Microchip?

It’s been nearly a year since Microchip acquired Atmel for $3.56 Billion. As with any merger, acquisition, or buyout, there has been concern and speculation over what will become of the Atmel catalog, the Microchip catalog, and Microchip’s strategy for the coming years.

For the Hackaday audience, this is a far more important issue than Intel’s acquisition of Altera, On Semi and Fairchild, and even Avago’s purchase of Broadcom in the largest semiconductor deal in history. The reason Microchip’s acquisition of Atmel is such an important issue is simply due to the fact the Hackaday community uses a lot of their parts. This was a holy war, and even changing the name of a line of chips to ‘MCMega’ would result in a consumer rebellion, or at least a lot of very annoying tweets.

For the record, I’ve tried my best to figure out what’s going on with Microchip’s acquisition of Atmel for the last few months. I’ve talked to a few Microchip reps, a few Atmel reps, and talked to a few ‘out of band’ connections – people who should know what’s going on but aren’t directly tied to either Atmel or Microchip. The best I’ve come up with is a strange silence. From my perspective, it seems like something is going on, but no one is saying anything.

Take the following with several grains of salt, but Microchip recently got in touch with me regarding their strategy following their Atmel acquisition. In a few thousand words, they outlined what’s going on in casa Microchip, and what will happen to the Atmel portfolio in the future.

Broad Strokes

In broad strokes, the Microchip PR team wanted to emphasize a few of the plans regarding their cores, software, and how Microchip parts are made obsolete. In simple, bullet point terms, this is what Microchip passed on to me, to pass on to you:

  • Microchip will continue their philosophy of customer-driven obsolescence. This has historically been true – Microchip does not EOL parts lightly, and the state of the art from 1995 is still, somewhere, in their catalog.
  • We plan to support both Atmel Studio 7 and MPLAB® X for the foreseeable future.
  • Microchip has never focused on “one core”, but rather on the whole solution providing “one platform.” This is also true. A year ago, Microchip had the MIPS-based PIC-32 cores, a few older PIC cores, and recently Microchip has released a few ARM cores. Atmel, likewise, has the family tree of 8 and 32-bit AVR cores and the ARM-based SAM cores.
  • We will continue to support and invest in growing our 8-bit PIC® and AVR MCU product families.

Specifics

In addition to the broad strokes outlined above, Microchip also sent along a few questions and answers from Ganesh Moorthy, Microchip’s President and COO. These statements dig a little bit deeper into what’s in store for the Microchip and Atmel portfolios:

How will the 32-bit products complement each other? Atmel has a few 32-bit microcontrollers, like the SAM and AT32 series. Microchip has the PIC-32. The answer to this question is, “Many of the 32-bit MCU products are largely complementary because of their different strengths and focus.  For example, the SAM series has specific families targeting lower power consumption and 5 volts where PIC32 has families more optimally suited for audio and graphics solutions. We plan to continue investing in both SAM and PIC32 families of products.

Will Atmel’s START support 8-bit AVRs? “Yes, although it is too early to commit to any specific dates at this stage, we consider modern rapid prototyping tools, such as START and the MPLAB Code Configurator, strategic for the our customers to deliver innovative and competitive solutions in this fast-paced industry.”

Now that Microchip has a complete portfolio of low-power, inexpensive 32-bit microcontrollers, will the focus on 8-bit product be inevitably reduced? No, we see that in actual embedded control applications there is still a large demand for the type of qualities that are uniquely provided by an 8-bit product such as: ease-of-use, 5V operation, robustness, noise immunity, real-time performance, long endurance, integration of analog and digital peripherals, extremely low-static power consumption and more. We don’t think that the number of bits is an appropriate / sufficient way to classify a complex product such as the modern microcontroller. We believe that having the right peripherals is actually what matters most.”

Security, Memories, WiFi, and Analog products. For both Atmel and Microchip, the most visible products in each of their portfolios is the lineup of microcontrollers. This isn’t the limit of their portfolios, though: Atmel has space-grade memories, Microchip has some very useful networking chips, and both companies have a number of security and crypto chips. In the statements given by Moorthy, very little will change. The reason for this is the relative lack of overlap in these devices. Even in segments where there is significant overlap, no EOLs are planned, circling back to the, “philosophy of customer-driven obsolescence.” In other words, if people keep buying it, it’s not going away.

The Takeaway

What is the future of Microchip post-Atmel acquisition? From what I’m seeing, not much. Microchip is falling back on their philosophy of ‘customer-driven obsolescence’. What does that mean? Any non-biased assessment of Microchip’s EOL policy is extremely generous. The chip found in the Basic Stamp 1, from 1993, is still available. It’s not recommended for new designs, but you can still buy it. That’s impressive any way you look at it.

The one thing we’re not getting out of this pseudo press release is information about what Atmel will be called in a few years. Will the Atmel mark be subsumed by a gigantic letter ‘M’? Will the company retain two different trademarks? There is no public information about this.

Yes, I know this post is a nearly verbatim copy of a pseudo press release. I’m not particularly happy this information was presented to me this way, but then again, the Atmel/Microchip ecosystem has been impressively secretive. This is the only information that exists, though, and I’m glad to have it in any event.

That said, there are a lot of people in the Hackaday community that want to know what the deal is with Microchip and Atmel. Short of pulling Jerry Seinfeld out of retirement, this is the best we’re going to get for now. Of course, if you have any info or speculation, the comments below are wide open.


Filed under: Microcontrollers, news

LoRaWAN FeatherWing for Adafruit Feather

 

phlorawanfw1-600

Dan Watson documented a new custom FeatherWing he has designed to add the MicroChip RN2483/RN2903 LoRaWAN module to Adafruit Feather:

I have designed some FeatherWings in the past to add a LoRa transceiver module to Feather. I did the LoRa FeatherWing Development Breakout and the LoRa FeatherWing IOX that used the HopeRF RFM95/96(W) modules. The RFM modules are small and cheap, which is great for IoT projects. However, they have a limitation if you want to use them with LoRaWAN: the stack is not implemented in the module, leaving that burden to the microcontroller. The LoRaWAN stack takes a fair amount of code space, and it’s difficult to implement in some 8-bit microcontrollers.
This new FeatherWing uses the RN2483 (868 MHz) or RN2903 (915 MHz) from MicroChip. It’s an excellent module that fully implements the LoRaWAN stack itself. The microcontroller talks to it over USART with a simple command structure to configure it and send/receive messages.

More details at The Sync Channel Blog.

Get ready for MPLAB Express, throw away your Arduino

image1

Chas from iradan.com writes:

I credit the maker movement with bringing electronics back from the crusty old and lonely electronics hobby back into the main stream. The Arduino is the micro of choice for this army of makers and I conceded it made sense… you install the IDE, plugged in your board into the USB port and a couple clicks later and you have an LED blinking.. the most exciting blinking LED you’d ever seen in most cases. I stuck with the PIC micros because I didn’t see any need to put back on the training wheels.
I got invited to a conference call earlier this week as they rolled out MPLAB Express. I almost passed the email up as spam, I’m glad I didn’t… a quick half hour later and I was in shock. Microchip is now relevant in the hobbyist realm.. They just leapfrogged over Arduino in usability for the beginner. They just released Microchip MPLAB Express a new, free, online cloud-IDE. Write your code (or pick a sample), press the compile button and the .hex file downloads.. DRAG AND DROP the .hex file on to the dev board. … the dev board looks like a plain flash drive… just drag and drop and the code is automatically programmed to the device… DRAG AND DROP.. brilliant.

Details at iradan.com homepage.