App note: Connecting LDOs in parallel

an_rohm_parallel_ldo

App note from ROHM semiconductor on combining LDOs for higher load capacity. Link here (PDF)

When you want to increase the output current capacity of an LDO, or when the power dissipation of a single LDO is insufficient, you might think of connecting LDOs in parallel if you need to disperse the dissipation using two LDOs. This application note provides some hints on how to connect LDOs in parallel.

App note: Capacitor selection guidelines on LDOs

an_analog_AN-1099

They are different kind of capacitors, selection for one capacitor varies depending on application. A good read app note from Analog Devices. Link here (PDF)

Capacitors are underrated. They do not have transistor counts in the billions nor do they use the latest submicron fabrication technology. In the minds of many engineers, a capacitor is simply two conductors separated by a dielectric. In short, they are one of the lowliest electronic components.

It is common for engineers to add a few capacitors to solve noise problems. This is because capacitors are widely seen by engineers as a panacea for solving noise related issues. Other than the capacitance and voltage rating, little thought is given to any other parameter. However, like all electronic components, capacitors are not perfect and possess parasitic resistance, inductance, capacitance variation over temperature and voltage bias, and other nonideal properties.

These factors must be considered when selecting a capacitor for many bypassing applications or where the actual value of the capacitor is important. Choosing the wrong capacitor can lead to circuit instability, excessive noise or power dissipation, shortened product life, or unpredictable circuit behavior.