Bus Pirate Ultra v1d 2.8 inch display board

In addition to the 2 inch IPS LCD we’re been using with the Bus Pirate prototype “Ultra”, we’re also sending off a PCB for a larger 2.8 inch display. Both panels are 240*320 pixels, so the larger version probably won’t look quite as stunning as the smaller display with high pixel density. If it does pass muster, a capacitive touch screen controller option is available that might be an interesting addition.

Bus Pirate Ultra display board v1d

Sorry for the poor image export. What have they done to Eagle?

The LCD carrier board for Bus Pirate prototype “Ultra” v1d went out today. This update matches the form factor of Ultra v1d (in progress) and has several minor changes:

  • Uses 10 pin 0.5mm flexible PCB connector, wired to the main board with a 1:N connection. This connector is much smaller and thinner than the 1.25mm connector on v1b, it reduces the space needed between the display board and the main board.
  • Flipped LCD orientation 180 degrees so font data can be written into bounding boxes in a more natural “left-to-right” orientation, eliminating the need to precalculate the text end point and write characters in reverse sequence
  • Nudged the display towards the IO header. We’ll experiment with some buttons in the remaining available space
  • Decoupling capacitors on LCD power pins

The 2 inch 240*320 IPS LCD display we’re been testing has a very pleasing pixel density, but we’re also itching to try the bigger 2.8 inch version. Next week we’ll send out a prototype carrier board for the bigger display, as well as some Bus Plug breakout boards.

BUS PIRATE: 2bit anti aliased font for small color LCDs

Bus Pirate prototype “Ultra” v1b has an IPS LCD to show pinout labels, voltage levels, and other useful info. The background image was done in Photoshop and is stored in the 32Mbit flash chip on the board. Pin labels and voltage readings are drawn on top of the background image with a fixed-width font.

1bit font generator by maxpromer

Most LCD fonts represent each pixel with a single bit (on or off). This is an efficient way to store a font, but the results look jagged and unprofessional. To get a better look, we anti aliased an open source font and then extracted two bits per pixel of color data. The results, shown above, use a four color lookup table to represent the background, text color, and two intermediate colors for anti aliased pixels.

Anti aliasing smooths the edges of each letter with a few pixels in intermediate colors. The bottom line of text is not processed at all, angular and circular edges look jagged and stepped. The top four lines of text use various styles of anti aliasing and the edges appear smoother on a small display.

Real-time anti aliasing on the MCU will take too many resources, so we made a pre-anti aliased font. Instead of storing each pixel as a single bit, we use 2bits of data per pixel and a four color lookup table to draw the characters. The resulting font takes twice as much space as a one bit font, but the extra bit (two extra colors) are used for those nice fuzzy edges.

The background image is designed for characters 14 pixels tall. It’s important to choose a fixed-width monospaced font so that each character has even spacing. We used DejaVu Mono, an open source fixed-width font that is used in Linux. At 14 pixels tall the characters are 10 pixels wide. Our characters will be 10×14 at 2 bits per pixel, that’s 35 bytes each.

In Photoshop we used View->New Guide Layout to create a 10×14 pixel grid, then added the typical range of ASCII characters. We skipped a box between each character so that any stray anti aliased pixels that fall outside the box don’t get included in a neighboring character. We tried several types of anti aliasing, and decided “Windows LCD” looks best on our small display.

At this point we have a grid of nicely anti aliased characters, but Photoshop is using dozens of different colored pixels to make those smooth edges. Before we process the character set we need to reduce that to something manageable. The simplest enhancement to a 1 bit font is to add an extra bit. 2 bits per pixel provides a four color pallet: text, background, and two shades of grey for the anti aliased pixels. We converted the characters to a four color pallet in Photoshop with Image->Mode->Indexed color, then assigned a four color custom pallet and saved the result as a 8bit color bitmap.

Bus Terminal has become a dumping ground for our utility scripts. A small addition loads the font image, crops each character, and outputs the font variables as HEX numbers. The font output goes into a font.h file to include in the Bus Pirate firmware.

lcd.c demonstrates how to use the 2 bit font. Our display uses 16 bits per pixel in 565RGB mode. font_lut16RGB contains our pallet of 4 16 bit color codes. We prefer to start with 24 bit color codes because they’re ubiquitous, so we enter our colors into font_lut24 and pre-calculate the 16 bit color values during initialization. Our color pallet includes the background image color, a white shade for the character, and two grey tones for the anti aliased pixels.

To write a character we loop through the 35 bytes of data, pulling out 2 bits at a time. Each two bit set is used to lookup a color code in the lookup table. The color code is sent to the display via SPI. A lot of data has to be moved to write a single character, 280 bytes each for this font.

This is an example of different anti aliasing methods (sharp/crisp/strong/smooth) using 2 bits/pixel. The line on the bottom has no anti aliasing. Without anti aliasing the bottom line is jagged and rough. The other lines add one bit (two indexed colors) for anti aliasing and look remarkably better, even without tweaking.

Taking it further

The 2 bit font looks much better than a 1 bit font. This same technique could be used to extract 3 or more bits of color data per pixel, but that eventually feels like reinventing the PNG.

This is very much a hack in progress. A few tweaks the pallet during conversion to indexed color that will probably make it look much nicer. Some of the characters in the set hang below the outline, so g, q and p are cut off. While Photoshop is good for extensive tweaking, it’s going to take a lot of effort to make font in different sizes.

It seems possible to render each character, anti alias it, and reduce it to indexed color using Qt libraries like QPaint and QPixelmap. The Photoshop side could be automated in Qt to export any system font in any size with minimal hassle.

BUS PIRATE: LCD with pinout labels and live info

The Bus Pirate prototype “Ultra” v1b has a 10 pin 1.25mm connector for a display daughterboard. We wanted a more dynamic way to keep track of the pinout and other handy information like pin states and voltage levels.

There are various reference stickers and labeled probe cables for the Bus Pirate v3 and v4, but a display frees us from strict pinout conventions and makes setup a lot easier for new hackers. More on the display below.

We wanted to use ePaper!

At first we really wanted to use ePaper. A static, easily readable display is reminiscent of the stickers it replaces, and makes reference to its primary purpose as a label. The slow update speeds also dampen expectations of flashy graphics and interaction.

The three color ePaper shown above was a top candidate, but it requires 180 seconds of rest between updates to stay in spec. Slow updates are acceptable, but we need to be able to change the display more frequently than once every three minutes.

While the two color version of this display doesn’t have this limitation, we ultimately decided that the Dots Per Inch is just too low to look really good. ePaper is also quite expensive compared to IPS LCDs with much higher pixel density.

IPS LCDs

Our attention turned to inexpensive LCDs. These are not the dodgy panels with limited color and ever-changing driver chips you may have used in the past. About $3 buys a 240×320 pixel 2 inch IPS (view from every angle) display supporting 250K colors, with a simple SPI interface and well known driver chip. We bought samples from two manufacturers, a QT020HLCG00 and a HT020SQV003NS.

With a bunch of colors and the ability to constantly update, we can show a lot of useful info. Each pin has a proper name corresponding to the active mode, along with input/output direction indication. Color caps on each pin match the probe cable wires, the terminal interface and the logic analyzer client.

Starting with v1b we can measure voltage on all 8 IO pins, so we’ll show that on the display. We’re particularly excited about this feature because we always end up jugging multimeter probes to verify levels during a rough hack. Now we can just look at the display!

Both LCDs are approximately the same dimensions, but the solderable flex connector is a slightly different length. The LCD daughterboard has extra long pads that fit both displays. The files for the display board are in the git repo.

The image on this LCD is just a static mock-up exported from Photoshop. Next we’ll need to create a font and write actual values to the display. This is will be tricky because LCD fonts typically look jagged and ugly, and we don’t really have enough power to do anti aliasing on the fly. Follow our latest progress in the forum.

PROTOTYPE: Bus Pirate “Ultra” v1b

Today we finished stuffing the first Bus Pirate “Ultra” v1b board. This includes the updates we posted this week, and a few other improvements from v1a:

The new power supply and voltage measurement concept are both tested and working on the new hardware. The new USB C connector is extremely solid and is a dream to solder, we’ll never look back.

Next we’ll work on getting the display going. So far it powers up and no smoke escapes.

Eagle files for v1b are in the git repo. Follow development of v1c in the forum.

16 x 2 LCD controlled via power line

16x2lcd_power_line_communication

Vinod blogged about a 16×2 LCD with data over power line:

Then I just thought why even 1 wire for data? Because we can easily multiplex the 1 wire data line with the Vcc line by keeping a diode + capacitor combination towards the LCD power supply pin. I am using an arduino board to do the serial to parallel conversion + some packet parsing and lcd backlight brightness control. I am not a huge fan of Arduino but for this simple proof of concept, I don’t want to bring out a Makefile folder with muliple files. I picked the Arduino UART RX as the serial receiver. RX pin is connected directly to the input Vcc, but before the schottky diode.

See the full post in his blog.

Check out the video after the break.

Adding the Nokia 5110 LCD to your Arduino data logger

From the comments on our ChipKIT based weather station using BME280 sensor module post, Edward Mallon writes:

A lot of us have ended up at this sensor / screen combination. But I couldn’t afford the extravagance of six dedicated control lines on our little pro mini based loggers.
However with some slight modification, you can drive the Nokia 5110 LCD with only 3 control lines, and power the display from a digital pin

More details thecavepearlproject.org.

Reading a VGA monitor’s configuration data with I2C and a PocketBeagle

pocketbeagle-vga-600

Ken Shirriff wrote an article showing how to read the monitor’s config data using the I2C protocol and a board with an I2C port:

Have you ever wondered how your computer knows all the characteristics of your monitor— the supported resolutions, the model, and even the serial number? Most monitors use a system called DDC to communicate this information to the computer.1 This information is transmitted using the I2C communication protocol—a protocol also popular for connecting hobbyist devices. In this post, I look inside a VGA monitor cable, use a tiny PocketBeagle (a single-board computer in the BeagleBone family) to read the I2C data from an LCD monitor, and then analyze this data.

More details at Ken Shirriff’s blog.

Reverse engineering of BK Precision 1696 switching power supply’s LCD protocol

ppreverseengineeringwiring-600

Kerry Wong writes:

As mentioned in my previous post, besides the broken LCD there was also an issue with the power supply portion of the unit and the output voltage was clamped at around 10 to 11V. The digital circuitry portion however seemed to be intact. Unfortunately since an identical LCD is virtually unobtanium, I thought I’d reverse engineer the LCD protocol so once the power supply is fixed I can fix the display by hooking up a different LCD.

See the full post on his blog.

Check out the video after the break.

SMA solar readout

sma-solar-600

Jean-Claude writes:

This is the first post of a 3-part series about reading out an SMA solar inverter over Bluetooth and displaying some readings every few seconds. Long-time readers may remember the Solar at last weblog post from several years ago and the SMA Relay, based on a JeeNode v6. The Bluetooth readout code was derived from Stuart Pittaway’s Nanode SMA PV Monitor code.
This project is for a friend who’s birthday is coming up shortly, and who has the same SMA 5000TL inverter as I do – although it can probably be used with other models.

Project info at Jeelabs.org.