Building a direct conversion receiver

IMG_20181208_002739

Ryan Flowers over at MiscDotGeek posted a how-to on building a direct conversion receiver:

In the first installment of this series, we discussed why we’re building a Direct Conversion receiver and talked about some basic ideas. In this installment, we explore what it takes to make the leap from a printed schematic to something physical that works. Follow along!

More details at MiscDotGeek.com.

DakBoard family calendar with Raspberry Pi Zero W and Read Only filesystem

DakBoard Family Calendar

Scott Hanselman made this DakBoard family calendar with Raspberry Pi Zero W and wrote a post on his blog detailing its assembly:

The implementation is simple genius. It’s a browser that starts up full screen (kiosk mode) and just sits there and updates occasionally. DakBoard provides the private webpage and tools to make that happen. You can certainly build this yourself with any number of open source tools. I chose DakBoard because it was simple, beautiful, and I was able to get the whole thing done in less than an hour. I’m sure I’ll spend many hours tweaking it through. There’s also the very popular MagicMIrror platform, so lots of choice and power in this space!

See the full post on his blog here.

The OpenBrite Turbo controller for Vectrex

Vectrex Controller Prototype

Stephen Wylie blogged about his Turbo Vectrex controller build:

 The main impetus for this was to have a homebrew controller that actually featured an analog joystick, since there were few if any guides elaborating how to fashion one from an existing controller.  I acquired a couple Parallax 2-axis joysticks with breadboard mounting capability to do the trick.
The Vectrex comes with a game in its ROM — Asteroids — thus you can play without needing a cartridge.  However, with the traditional controller, this requires lots of button-mashing since it has no auto-fire feature.  Using a 555 timer, potentiometer, and clever values within an RC circuit, I have given it the ability to auto-fire.

See the full post on his blog here, GOSHtastic.

LM3886 based stereo amplifier

lm3886-based-stereo-power-amplifier

Mark Rehorst blogged about his LM3886 based stereo amplifier build:

Several years ago, National Semiconductor came out with some very high performance, easy to use audio power amplifier ICs.  I was in need of an extra amplifier so I could biamp some of my home-built electrostatic loudspeakers so I tried the LM3886 chip.
This part was chosen because of the ease of use, power output, turn-on and off thump suppression, low distortion, and built-in protection against shorts and thermal runaway.  There isn’t much more to ask of a power amp than that.  When driving electrostatic speakers, you can’t have too much protection!

See the full post on his blog here.

Pocket high voltage generator upgrade

Pocket_HV_upg-3

Aki posted an update on his pocket high voltage generator project we covered previously:

The Pocket High Voltage Generator that I made a few weeks ago proved to be a very handy tool. I have been testing Zener diodes very often since I use many Zeners in 12V to 91V range.
However I wanted to give it a bit more power so that I can test Nixie tubes clearly – the previous design can only give less than 0.5 mA through most Nixie tubes, some digits don’t lit up completely.
I made some upgrades to the components to give it a modest 2 – 5 mA (depending on the voltage) output. While still keeping the same form factor.

More details on The LED Artist blog.

Simple homebrew 6502 computer

homebrew6502_003

Sven Krasser blogged about his 6502-based homebrew 8-bit computer build:

After completing my VGA Generator project a while back, I’ve embarked on a new electronics project: building a simple 6502-based homebrew 8-bit computer on a breadboard. There are a bunch of similar projects online from which to draw ideas. Some projects set constraints such as only using contemporary parts of the 8-bit era, no FPGAs, no microcontrollers etc. In my case, I opted instead to keep the constraints minimal and the project simple.

See the full post on his blog here.

Check out the video after the break.

N6QW Heathkit SSB transceiver

20181014_192406

Pete Juliano, N6QW,  has a nice build log on his newest version Heathkit 40M SSB Transceiver:

What are you thinking — I am not trying to break any world record? My XYL asked me that question today — why are you building another rig? Followed up by a snide comment that I had so many rigs now why do I need another one. Well the answer plain and simple because I can!
For the longest time in the late 60’s early 70’s my success rate with homebrew SSB transceivers was miserable. At that time I lacked the more sophisticated test gear and let’s face it some of the technology wasn’t that great. Crappy Analog VFO’s were high on the list of impediments! I also had to work and to give a fair share of my time to the family — it is that balance thing.
But today that is all changed –better test gear, better technology like Digital VFO’s and a bit more time. The latest project is to demonstrate that some of the components out of boat anchors can indeed be reworked to provide a very modern, very capable rig.

See the full post on N6QW blog.

Check out the video after the break.

Battery monitor on a automotive relay form factor

001-Cover-1024x638

Jesus Echavarria made this battery monitor and wrote a post on his blog detailing its assembly:

Here’s one of the design I do last year for a client. He wants to measure the voltage of a car battery and set a couple of alarms when voltage falls below a defined values. Also, he wants to put the device in the relay box of the car, so the design needs to have a relay form factor to easy integration. So, after a couple of iterations, here’s the final design of the battery monitor.

Via Designing Electronics in Spain.

ICSP switch box

dav

Stynus has published a new build:

For a project I need to program a few microcontrollers in the same circuit. This meant I needed to plug the programmer around on the board a lot.  This got annoying very fast. Therefore I decided to make a switch box. In my junk pile I found an old switch of a, parallel port switch. This has 4 positions and a lot of contacts. For the ICSP I only need 3. However in some circuits the supply voltage is not common. Hence, I chose to also switch the power supply connections.  For the connections to the circuit boards I used DIN connectors, for the simple reason I have lots of these.

See the full post on ElektronicaStynus blog.

DIY custom power supply

2018-10-15-18.54

Anthony Lieuallen made this custom power supply and wrote a post on his blog detailing its assembly:

You might not truly be an electronics nerd until you build your own power supply. Either way, I’ve finally passed that threshold. As I’ve mentioned previously (and previouslier), I’ve been working on mine — very slowly, off and on — for most of a year. The bare start came with a guide posted to Hackaday about using nichrome wire to heat and bend acrylic plastic in straight lines, to make cases.

More details at Arantius.com.