Overdrive guitar effects pedal

pstomp-600

Eddie over at Bantam Tools shared detailed instructions of how to build this DIY overdrive effects pedal:

This project shows you how to make your very own effects stompbox! We’ll go through the steps of downloading the .brd file, loading the file into our software, milling the board on the Bantam Tools Desktop PCB Milling Machine, and soldering the components. This is a great tutorial for those new to milling printed circuit boards (PCBs) or for those who want practice soldering components to the board as a part of a larger assembly.

More info at Bantam Tools project page.

Arduino controlled Dual Mono AK4490 DAC (part 1)

pDual_Mono_AK4490_05-600

This article is the first of a series detailing the design and build process of an Arduino controlled Dual Mono AK4490 DAC by DimDim:

The design goal was to do a dual mono design so as to maximize SNR and channel separation. A 4-layer PCB design was chosen so as to have a very solid, low impedance ground plane as well as proper power and signal planes. The I2S, audio signals and power after the local LDO regulators are routed on the top layer, the 2 middle layers are ground and power planes, and the bottom layer serves to route I2C signals and some power lines.

See the full post here, Dimdim’s blog.

Simpleceiver Plus version 2 SSB transceiver

P20171101_162453[1]-600

An update on Pete Juliano’s (N6QW) Simpleceiver project we covered previously:

Version 2 — What is it? V2.0 is the Simpleceiver Plus SSB Transceiver Architecture with the following changes:

  • A GRQP Club 9.0 MHz Crystal Filter is used in place of the homebrew 12.096 Four Pole Filter. This gives the advantage of acquiring the matching crystals for the BFO and with a 5 MHz Analog VFO you can have a two band rig (20 meters or 80 Meters). The only change required is the appropriate matching Band Pass and Low Pass Filters. A couple of relays and a toggle switch will put you on either band. So a big plus here. Or you can leave it on 40 Meters.
  • Compacting the rig in physical size. I have used two 4 X 6 inch PC Board and fit all of the circuitry on these two boards which will then be stacked upon each other.

See the full post on his blog.

DIY through hole plating of PCBs

DSC_1176-600

Jan Mrázek documented his experience experimenting with DIY through-hole plating of PCBs:

I’ve been thinking about though hole plating for several years. The general procedure is simple – you have to activate non-copper surfaces (make them conductive) and then you apply standard electroplating procedure. You can find many tutorials on the internet, however, most of the require hard-to-get chemicals for the activation solution. Few weeks ago, I noticed that the local electronic component supplier had started to sell Kontakt Chemie Graphit – a conductive paint. It’s basically a colloidal graphite in an organic solution. It is supposed to be used for making surfaces conductive to prevent static electricity discharges. This could be perfect for activation of the non-copper surfaces! So I gathered all the necesery chemicals and equipment and made a test run.

More info at mind.dump() blog.

Simulating 3-phase AC for energy monitor testing

IMG_20170519_223255-600

Tisham Dhar blogged about his 3-phase synthesizer:

Finding 3-phase is difficult, convincing the owner of the said supply to test some home made hardware is even more so. After building a 3-phase energy monitor my testing options for it appeared very limited. So I set about making my own low-cost 3-phase energy monitor calibration system.

See the full post on his blog.

Check out the video after the break.

How to build your own RS232 to TTL converter

pix4

A how-to on making a DIY RS232 to TTL converter by Jestine Yong:

As I read many pages on the internet I saw there is a sort of adapter so called “USB to TTL adapter” who can communicate through with the uC. I had not the time to order one but I give a try to make one for the COM port. Actually it is an RS232 to TTL converter which I found better from my opinion than that USB to TTL adapter.
Here is why I like more this RS232 to TTL adapter than the other one:

  • can be used on a real RS232 port
  • it is a stable voltage level converter
  • can be used on USB port too (through USB to RS232 converter)
  • there is no VCC ( somebody would say it’s a disadvantage but wait…) *
  • it is a real hardware stuff, no emulation etc. (if it is used through a real com port)
  • can be built really cheap and easy

More details at Electronics Repair site.

Building a 12V 110Ah battery bank using 80 32650 LiFePO4 cells

B8-600

Kerry Wong built a DIY battery bank using eighty 32650 LiFePO4 cells:

During the past couple of weeks I have been busy making a large battery bank using the eighty 32650 LiFePO4 cells I bought on eBay. The battery bank I am building is a 12V (13.2V nominal) 4S/20P one. With each cell rated at 5.5Ah the battery bank has a capacity of 110Ah, which is just under 1.5kWh.
While These cells are marked as 32700 they are technically still 32650 cells according to the datasheet, which is a little bit confusing. Since I am making a custom battery bank the actual cell dimension is not as critical.

See the full post on his blog.

Check out the video after the break.

Build your own testing/programming jig

testrig_all-1080x675-600

Sjaak has published a new build:

Inspired by an old article from sparkfun and some tests I conducted myself I came up with a PCB that holds the pogopinholders and an lasercut acrylic fixture for the PCB on top. Using the dirt(y)cheap services from dirtypcbs.com the cost for this jig, including pogopins and their holders is about 45 USD. As an advantage you receive 5 lasercut acrylic and 10 PCBS which allows you to make 3-4 jigs in total!
To design the PCB that holds the pogopins I started with a 10×10 PCB with M3 mounting holes and imported the to be programmed PCB (File, Import, Eagle drawing) and place this in the centre (not mandatory, but looks prettier).

See the full post at smdprutser.nl.

Network cable tester

picture-IMG_20170910_210643-600

Dilshan Jayakody writes, “This is an automatic Cat6 / Cat5 network cable tester designed using NE555 timer and 4017 decade counters. This unit test all 8 wire lines of twisted pair network cable and indicate pass/fail status with single LED. We design this unit to test network connectivity issues in Cat6 / Cat5 cable systems and it is capable to check both crossover and straight-through type network cables.”

More info on his blog here.