Simple homebrew 6502 computer

homebrew6502_003

Sven Krasser blogged about his 6502-based homebrew 8-bit computer build:

After completing my VGA Generator project a while back, I’ve embarked on a new electronics project: building a simple 6502-based homebrew 8-bit computer on a breadboard. There are a bunch of similar projects online from which to draw ideas. Some projects set constraints such as only using contemporary parts of the 8-bit era, no FPGAs, no microcontrollers etc. In my case, I opted instead to keep the constraints minimal and the project simple.

See the full post on his blog here.

Check out the video after the break.

N6QW Heathkit SSB transceiver

20181014_192406

Pete Juliano, N6QW,  has a nice build log on his newest version Heathkit 40M SSB Transceiver:

What are you thinking — I am not trying to break any world record? My XYL asked me that question today — why are you building another rig? Followed up by a snide comment that I had so many rigs now why do I need another one. Well the answer plain and simple because I can!
For the longest time in the late 60’s early 70’s my success rate with homebrew SSB transceivers was miserable. At that time I lacked the more sophisticated test gear and let’s face it some of the technology wasn’t that great. Crappy Analog VFO’s were high on the list of impediments! I also had to work and to give a fair share of my time to the family — it is that balance thing.
But today that is all changed –better test gear, better technology like Digital VFO’s and a bit more time. The latest project is to demonstrate that some of the components out of boat anchors can indeed be reworked to provide a very modern, very capable rig.

See the full post on N6QW blog.

Check out the video after the break.

Battery monitor on a automotive relay form factor

001-Cover-1024x638

Jesus Echavarria made this battery monitor and wrote a post on his blog detailing its assembly:

Here’s one of the design I do last year for a client. He wants to measure the voltage of a car battery and set a couple of alarms when voltage falls below a defined values. Also, he wants to put the device in the relay box of the car, so the design needs to have a relay form factor to easy integration. So, after a couple of iterations, here’s the final design of the battery monitor.

Via Designing Electronics in Spain.

ICSP switch box

dav

Stynus has published a new build:

For a project I need to program a few microcontrollers in the same circuit. This meant I needed to plug the programmer around on the board a lot.  This got annoying very fast. Therefore I decided to make a switch box. In my junk pile I found an old switch of a, parallel port switch. This has 4 positions and a lot of contacts. For the ICSP I only need 3. However in some circuits the supply voltage is not common. Hence, I chose to also switch the power supply connections.  For the connections to the circuit boards I used DIN connectors, for the simple reason I have lots of these.

See the full post on ElektronicaStynus blog.

DIY custom power supply

2018-10-15-18.54

Anthony Lieuallen made this custom power supply and wrote a post on his blog detailing its assembly:

You might not truly be an electronics nerd until you build your own power supply. Either way, I’ve finally passed that threshold. As I’ve mentioned previously (and previouslier), I’ve been working on mine — very slowly, off and on — for most of a year. The bare start came with a guide posted to Hackaday about using nichrome wire to heat and bend acrylic plastic in straight lines, to make cases.

More details at Arantius.com.

Povon home energy monitor part 1, 20 channel system

P5120542-1024x769

Coyt Barringer documented his home energy monitor project called POVON. This first part of a series will detail the 20 Channel sub-metering hardware:

Our initial goal was to monitor power consumption in different parts of the house, and we quickly realized every household circuit would need to be monitored. After some research, small clip on current transformers, or CT’s, looked to be the best sensor for our application. Using CT’s, current draw and thus power on each circuit can be measured. The CT’s would be installed on the wires immediately leaving the circuit breakers in the standard household breaker box. CT’s work great for this because they’re completely isolated and nothing needs to be disconnected to install them.

Project info at lostengineer.com.

SmileyBox – Statistics, the old fashioned way, upgraded

sb-top

Vagrearg published a new build:

Lies, damn lies and statistics.
You have a high school science fair and want to know how your project was perceived by the visitors. Modern online behaviour will direct you to “taking the online survey”. That requires an extra step for the visitors, usually by taking hold of their mobile device and fiddling with a small screen.
One problem you will encounter is designing good computer interaction and a proper look and feel on the tiny screen. It is a lot of work. A second problem is the distraction of using the mobile device with respect to the project being surveyed. The visitor will concentrate on the mobile device and that will diminish focus on the project for a moment. A third problem is anonymity and proliferation of data. Do we really need to be online and spread all that information one’s device sends?

Project info at vagrearg.org.

Pocket high voltage generator quick build

IMG_20181003_164820

Aki made this DIY pocket HV generator:

There are times you find yourself looking for a relatively high voltage (100V to 200V often in my case) but low current DC power supply. I have zener diodes that are higher than 30V, which makes the lab supply useless, and filament LEDs with forward voltage over 60V. When I need to test them quickly, I used to hook up a simple rectifier circuit to a variable AC power supply (nothing more than a slidac with isolation transformer). While this gets job done, the setup is capable of supplying much too high current (1A or more), so I was always very nervous and extra careful in handling the circuit. All I need is a little HV generator that gives me around 200V DC and only capable of supplying a milliamp or less. Realizing that I do have such design available – one of the Nixie supply circuit – I just decided to put one together to use.

Project info on The LED Artist blog.

Atari 5200 Playstation 2 dual-shock controller adapter

5200-ps2-built

Dr. Scott Baker has developed an adapter that allows you to use Playstation 2 analog controllers on an Atari 5200, that is available on gitHub:

This adapter allows you to use a PS2 controller on an Atari 5200 gaming console. The 5200 was notable at the time for its use of analog joysticks, but the controllers that shipped with the console are pretty lousy. They don’t self-center and they have a mushy annoying feel to them. The fire buttons aren’t very tactile in nature. The controller in my opinion just doesn’t feel or work good. Nevertheless, you have to give the Atari 5200 some respect for trying to be a pioneer in the technology.
As such, several solutions have been proposed for using alternate controllers. There are adapters for Atari 2600 digital sticks, adapters for analog PC joysticks, my own handheld controller, etc. I decided to adapt the basic technique of my handheld controller to a PS2 adapter.

See the full post on Dr. Scott M. Baker’s blog.

IoT LED Dimmer

IOT-Dimmer

Sasa Karanovic shared a how-to on making a IoT LED dimmer:

Making a IoT LED dimmer that you can control via your PC, phone, tablet or any other device connected to the network is super simple, and I’m going to show you how.
I’m sharing my three channel LED dimmer that you can use to dim single RGB LED strip or dim three separate LED channels. I want to be able to control lights above my desk and also mix warm white and cool white strip to give me more flexibility over lighting while I’m working, taking pictures or watching movies.

See the full post on Sasa Karanovic’s blog.