Build your own testing/programming jig

testrig_all-1080x675-600

Sjaak has published a new build:

Inspired by an old article from sparkfun and some tests I conducted myself I came up with a PCB that holds the pogopinholders and an lasercut acrylic fixture for the PCB on top. Using the dirt(y)cheap services from dirtypcbs.com the cost for this jig, including pogopins and their holders is about 45 USD. As an advantage you receive 5 lasercut acrylic and 10 PCBS which allows you to make 3-4 jigs in total!
To design the PCB that holds the pogopins I started with a 10×10 PCB with M3 mounting holes and imported the to be programmed PCB (File, Import, Eagle drawing) and place this in the centre (not mandatory, but looks prettier).

See the full post at smdprutser.nl.

Network cable tester

picture-IMG_20170910_210643-600

Dilshan Jayakody writes, “This is an automatic Cat6 / Cat5 network cable tester designed using NE555 timer and 4017 decade counters. This unit test all 8 wire lines of twisted pair network cable and indicate pass/fail status with single LED. We design this unit to test network connectivity issues in Cat6 / Cat5 cable systems and it is capable to check both crossover and straight-through type network cables.”

More info on his blog here.

DIY ISA game control adapter with parallel IO

picture-isa-gca-io-board-600

Dr. Scott Baker has published a new build:

My Xi 8088 homebuilt PC is running a little short on slots, so I wanted to combine the functions of a game control adapter and an 8255 PIO board. Two functions in one slot. As to why one wants each of these things:

  • A game control adapter is used to interface to PC joysticks. These are the old-style analog joysticks with the 15-pin connectors.
  • An 8255 board is a general purpose interfacing board, providing 24 bits of digital IO that can be configured as inputs, outputs, or a mix of both. This is not in and of itself a “parallel port”, but could probably be used to implement one.

See the full post on his blog.

The Boat PC – a marine based Raspberry Pi project

picture-complete_rear-600

Domipheus has published a new build:

In late 2015 I was doing my usual head-scratching about what gifts to get various family members for the holiday season. My wife mentioned making something electronic for my father-in-laws boat, and after a few hours of collecting thoughts came up with an idea:

  • A Raspberry Pi computer, which could be powered off the boats 12v batteries
  • This computer would have sensors which made sense on a boat. Certainly GPS
  • I’d have some software which collated the sensor data and displayed it nicely
  • This could plug into the onboard TV using HDMI
  • It would all be put into a suitable enclosure

Project info at Domipheus Labs homepage.

Microcontroller action potential generator

pics-ap-generator-running-600

Scott Harden writes:

Here I demonstrate how to use a single microcontroller pin to generate action-potential-like waveforms. The output is similar my fully analog action potential generator circuit, but the waveform here is created in an entirely different way. A microcontroller is at the core of this project and determines when to fire action potentials. Taking advantage of the pseudo-random number generator (rand() in AVR-GCC’s stdlib.h), I am able to easily produce unevenly-spaced action potentials which more accurately reflect those observed in nature. This circuit has a potentiometer to adjust the action potential frequency (probability) and another to adjust the amount of overshoot (afterhyperpolarization, AHP). I created this project because I wanted to practice designing various types of action potential measurement circuits, so creating an action potential generating circuit was an obvious perquisite.

See the full post at SWHarden.com.

Check out the video after the break.

Yet another CXA1191 FM radio receiver

pics-35312091644_6f79f04334_z-600

Dilshan Jayakody has published a new build:

This is simple, but very high quality CXA1191S based FM radio receiver system. In this design we use Sony CXA1191S as FM tuner and TDA2003 as an audio amplifier. This receiver system is designed to work with 12V DC power source and it delivers approximately 6W audio output power (with 4Ω speaker load).

Check out more details on his blog here. Project files are available at elect.wikispaces.com.

HydroBot: Prototyping new modules

ProtoModule-600x400

Matthew Reed writes:

ProtoModule is a HydroBot module designed to easily develop and test new monitoring or control functions that may someday go into a HydroBot module. It has 11 GPIO pins and the power rails broken out on a 0.1” pin header for easy breadboarding or interfacing with ribbon cables. The provided pins give access to a variety of digital and analog I/O, as well as digital communication peripherals, to allow for many flexible design options.

More info at protofusion.org.

Halogen floodlight SMT reflow

flood_reflow_01

David Sanz Kirbis built his own reflow device with an halogen floodlight, that is available on Github:

First test was to check the speed of the temperature rise inside a standard halogen floodlight. Reflow soldering temperature curves are quite demanding, and some adapted ovens can’t reach the degrees-per-second speed of the ramp-up stages of these curves.
I bought the spotlight, put an aluminium sheet covering the inside surface of the protective glass (to reduce heat loss), and measured the temperature rise with a multimeter’s thermometer…. and wow! More than 5ºC/s… and I better turned the thing off after reaching 300ºC and still rising quickly.
So the floodlight was able to fulfill the needs.
Next step was a temperature controller, that is, the device that keeps the temperature as in a specified reflow curve profile in each moment.

See the full post and more details on his blog, TheRandomLab.

Check out the video after the break.