App note: 12Vac LED Driving without smoothing capacitors

an_diodes_an56

Application note from Diodes Incorporated on driving 12Vac LED without smoothing capacitors with their Zetex ZXLD1360 LED driver IC and SBR2A40P1 super barrier rectifier. Link here (PDF)

LED based architectural lighting is now coming of age, but there are still some problems to be considered when designing luminaires to be fitted into existing installations.

This Application Note discusses some of the challenges and shows that the omission of the traditional smoothing capacitors has advantages in saving cost, space and PFC problems.

App note: Active capacitor discharge circuit considerations for FPGAs

an_diodes_an1140

Power down sequencing and discharging on FPGAs app note from Diodes Incorporated. Link here (PDF)

FPGA’s need the different power rails to be powered up and down in a defined sequence. For power down, each sequenced rail needs to be fully off before the next rail is turned off. With large high speed and high functionality FPGA’s, the power rails have large bulk capacitors to be discharged quickly and safely within a total time of 100ms and up to 10 rails each to be discharged within 10ms.

This application note shows a methodology and considerations for safe open ended shutdown to be controlled by a power sequencing circuit and using correctly chosen MOSFET to discharge the capacitor bank.

App note: Automotive reverse battery protection diode

an_diodes_an1101

Super Barrier Rectifier™ (SBR) from Diodes Incorporated offers good power efficiency compared to normal PN junction diode and design simplicity compared to MOSFETs reverse protection. Link here (PDF)

This application note compares the performance of Diodes Inc. Super Barrier Rectifier™ (SBR) as an automotive reverse battery protection diode with other solutions. An overview of the reverse battery protection requirement and the qualification standards are also presented.

App note: A closer look at LVDS technology

an_diodes_an041-p

A general overview of Low Voltage Differential Signaling (LVDS) from Diodes incorporated. Link here (PDF)

With the increase in demand for high throughputs, current technologies are becoming less efficient. Data transmission devices like RS-422, RS-485, SCSI and other devices are limited in data rate and power dissipation. With LVDS, data rate has increased tremendously to meet the demand in the high bandwidth market and yet still consumes less power than many current devices. LVDS offers low-power. low-noise coupling, low EMI emissions, and switching capability beyond many current standards. LVDS applications can be used anywhere where high data rate is required and needed to be transfer over a distance. LVDS technology can be found in printers, flat panels, switches, routers, audio/video digital signal processing and many more other applications.