Grbl_ESP32 development board version 3.1

20181007_153826

A board to control your CNC machine with Grbl_ESP32 designed by Bart Dring, that is available on GitHub:

This is a Grbl_ESP32 CNC Development board. This is a quick and easy way to use and test CNC on the ESP32 controller.
Grbl is a great CNC firmware that has been around for nearly a decade. It was originally designed for the Arduino UNO and basic 3 axis CNC routers, but it has been ported to other CPUs and was the basis for many other CNC and 3D printer firmwares.
The firmware was written using the Arduino IDE to make it as user friendly as possible. If you have experience with Arduinos, this will not be much different.

Project info at Buildlog.Net Blog. It’s also up on Tindie.

SAMD21 LoRa development board with GPS

LoRaWAN_node_top

Michael Krumpus designed and built a SAMD21 development board with LoRa radio module and GPS receiver, that is available on GitHub:

I’ve been doing some LoRa projects lately in order to learn as much as I can about this exciting new radio technology (see this LoRa mesh networking project and this LoRa weather station). ATmega328-based Moteino modules work great for a lot of projects, but I wanted a LoRa node with more processing power, more memory, and an onboard GPS receiver. The ATmega328 is just too constrained with memory — I’ve outgrown it. I really wanted a LoRa board with an ARM Cortex microcontroller like the SAMD21. This is the microcontroller used on the Arduino Zero. So, my ideal board is a SAMD21 with LoRa radio module and GPS receiver, all programmable with the Arduino IDE.
But, where is such a board? I could not find one so I decided to design and make one myself.

More details on Project Lab.

The ARM chip that wont cost an arm and a leg

2018-09-18T16 25 43.036Z-board

A small ARM developmentboard from SMDprutser, that is available on GitHub:

Searching the prerequisite Chinese websites to satisfy my shopping fetish I came across a neat little ARM Cortex-M0 chip which is an extremely good bang for buck. I believe it is the smallest chip available in a reasonable hand-solderable package (TSOP8). This board gives you everything to explore this marvel of this Chinese Semiconductor.

Project info at smdprutser.nl. It’s also up on Tindie.

EasyESP-1: a rapid prototyping and development board for ESP8266

pics-EasyESP_Features-600

Raj over at Embedded Lab has designed a development board for ESP8266:

EasyESP-1 is a rapid prototyping board for the low-cost, WiFi-enabled ESP8266 microcontroller. With an onboard USB-to-Serial converter pre-installed, EasyESP-1 does not require any additional hardware to download your application firmware to the ESP8266 chip. The ESP module used in this development board is ESP-12E. All the I/O pins are broken out to 0.1” female headers for easy access, as well as to standard Grove connectors for connecting Grove sensors and other compatible modules. The 180-point breadboard further facilitates experimenting and testing of external circuits.

List of features

  • Easy access to all GPIO pin through female headers and Grove connectors
  • On-board USB-UART chip for easy programming and debugging
  • 180-point breadboard for experimenting with test circuits
  • On-board 3.3V (800 mA) regulated power supply
  • Two tact switches for user inputs, and one output LED
  • Slide switch to enable/disable auto Wake Up feature during Sleep mode

Full details at Embedded Lab blog. It’s also up on Tindie.

First GD32 tests

gd32f103-1080x675-600

Sjaak has published a new build, the STM32/GD32F103 QFN32 breakout board:

Uptill now I used 0603 sized resistors and capacitors but for this project I switched to 0402 to save a few mm on the board. I have soldered many challenging chip packages so I felt confident. The technique is the same as for bigger sized devices: flux the area generous, hold the device with tweezers, solder one pad with fresh soldered iron and move the device into the molten solder puddle, retract the soldering iron and watch the solder joint cool down. If the solder joint is solid solder the other side too. I suggest using a fine (curved) tweezer and lots of lighting on your workarea. If you are a bit older as I am using a loupe or magnifying glass. Still use flux as much as possible. Never expected but the micro USB connector gave me (several) headaches to get it soldered properly.

Project info at smdprutser.nl

 

Atmel SAM D09 Development board

samd09brk1-600

Dan Watson has designed a development board for the Atmel SAM D09 microcontroller:

The Atmel SAM D series of 32-bit microcontrollers includes several devices, each with a long list of features at great prices. Perhaps the best known of the series in the maker community is the SAM D21 due to its use on the Arduino Zero. However, there are several other devices in the product line that are worth taking a look at. The smallest of the bunch is the SAM D09 that comes in a 14-pin SOIC package. The 14SOIC package is one of my favorites. It is easy to solder, easy to break out on a PCB, and takes up little board space. I decided to order some SAM D09C chips and design a small development board in order to learn more about the capabilities of the device.

Project info at The Sync Channel blog.