Akafugu modular VFD clock review

akafugu-vfd

Manuel Azevedo did a review of Akafugu’s modular VFD clock:

I discovered this wonderful tiny VFD clock by chance, while browsing Tindie for novelties. As I’m a newcomer to this Nixie/VFD world, I was not aware that Brian Stuckey already did an article in 2014 on a previous incarnation of this clock (Akafugu Modular VFD Clock).
I contacted Per Johan Groland, owner of the Japanese maker Akafugu that makes these clocks, for all the shields I could get my hands on – The only shield I did not order was the 4 tube IN-4/17 shield, which Brian already tested and which I find does not do this clock justice.

See the full post and more details on his blog, TubeClockDB.

Check out the video after the break.

Single tube Lethal Nixie clock

singletubenix1-600

Andrew Moser made a lethal nixie tube clock:

Clock 1: Single tube Lethal Nixie clock — you know having all the high voltage lines exposed and un-insulated. Inspiration for this design was from this clock. Unfortunately I built mine right after having surgery. I think the painkillers had something to do with the aesthetics… Anyhow I wasn’t electrocuted while building it under the meds…That’s always a plus!
ATMEGA 328 arduino with a DS1307 RTC for timekeeping. Basically the arduino pulls time from the RTC then updates IO. During this it’s got a time based ISR that: interrupts the code, measures the high voltage, then makes necessary tweaks to the boost converter duty cycle via a proportional controller.

Project info at ReiBot.org.

Check out the video after the break.

 

X Marks the Clock

There’s no shortage of Arduino-based clocks around. [Mr_fid’s] clock, though, gets a second look because it is very unique looking. Then it gets a third look because it would be very difficult to read for the uninitiated.

The clock uses three Xs made of LEDs. There is one X for the hours (this is a 24-hour clock), another for the minutes, and one for the seconds. The left side of each X represents the tens’ digit of the number, while the right-side is the units.

But wait… even with two segments on each side of the X, that only allows for numbers from 0 to 3 in binary, right? [Mr_fid] uses another dimension–color–to get around that limitation. Although he calls this a binary clock, it is more accurately a binary-coded-decimal (BCD) clock. Red LEDs represent the numbers one to three. Green LEDs are four to six. Two blue segments represent seven to nine. It sounds complicated, but if you watch the video, below, it will make sense.

This isn’t [Mr_fid’s] first clock. He is using a DS1307 real time clock module to make up for the Arduino’s tendency to drift. Even if you aren’t interested in the clock, the mounting of the LEDs with plastic–and the issues he had isolating them from each other–might come in handy in other displays.

We’ve seen a lot of Arduino clocks over the years, including some that talk. We’ve even seen some that qualify as interactive furniture, whatever that is.


Filed under: Arduino Hacks, clock hacks

Arduino Clock Is HAL 1000

In the movie 2001: A Space Odyssey, HAL 9000 — the neurotic computer — had a birthday in 1992 (for some reason, in the book it is 1997). In the late 1960s, that date sounded impossibly far away, but now it seems like a distant memory. The only thing is, we are only now starting to get computers with voice I/O that are practical and even they are a far cry from HAL.

[GeraldF6] built an Arduino-based clock. That’s nothing new but thanks to a MOVI board (ok, shield), this clock has voice input and output as you can see in the video below. Unlike most modern speech-enabled devices, the MOVI board (and, thus, the clock, does not use an external server in the cloud or any remote processing at all. On the other hand, the speech quality isn’t what you might expect from any of the modern smartphone assistants that talk. We estimate it might be about 1/9 the power of the HAL 9000.

You might wonder what you have to say to a clock. You’ll see in the video you can do things like set and query timers. Unlike HAL, the device works like a Star Trek computer. You address it as Arduino. Then it beeps and you can speak a command. There’s also a real-time clock module.

Setting up the MOVI is simple:

 recognizer.init(); // Initialize MOVI (waits for it to boot)
 recognizer.callSign("Arduino"); // Train callsign Arduino (may take 20 seconds)
 recognizer.addSentence(F("What time is it ?")); // Add sentence 1
 recognizer.addSentence(F("What is the time ?")); // Add sentence 2
 recognizer.addSentence(F("What is the date ?")); // Add sentence 3
...

Then a call to recognizer.poll will return a numeric code for anything it hears. Here is a snippet:

// Get result from MOVI, 0 denotes nothing happened, negative values denote events (see docs)

 signed int res = recognizer.poll(); 

// Tell current time
 if (res==1 | res==2) { // Sentence 1 & 2
 if ( now.hour() > 12) 
 recognizer.say("It's " + String(now.hour()-12) + " " + ( now.minute() < 10 ? "O" : "" ) +
     String(now.minute()) + "P M" ); // Speak the time
...

Fairly easy.

HAL being a NASA project (USSC, not NASA, and HAL was a product of a lab at University of Illinois Urbana-Champaign – ed.) probably cost millions, but the MOVI board is $70-$90. It also isn’t likely to go crazy and try to kill you, so that’s another bonus. Maybe we’ll build one in a different casing. We recently talked about neural networks improving speech recognition and synthesis. This is a long way from that.


Filed under: Arduino Hacks, clock hacks

For Your Binge-Watching Pleasure: The Clickspring Clock Is Finally Complete

It took as long to make as it takes to gestate a human, but the Clickspring open-frame mechanical clock is finally complete. And the results are spectacular.

If you have even a passing interest in machining, you owe it to yourself to watch the entire 23 episode playlist. The level of craftsmanship that [Chris] displays in every episode, both in terms of the clock build and the production values of his videos is truly something to behold. The clock started as CAD prints glued to brass plates as templates for the scroll saw work that roughed out the frames and gears. Bar stock was turned, parts were threaded and knurled, and gear teeth were cut. Every screw in the clock was custom made and heat-treated to a rich blue that contrasts beautifully with the mirror polish on the brass parts. Each episode has some little tidbit of precision machining that would make the episode worth watching even if you have no interest in clocks. For our money, the best moment comes in episode 10 when the bezel and chapter ring come together with a satisfying click.

We feature a lot of timekeeping projects here, but none can compare to the Clickspring clock. If you’re still not convinced, take a look at some of our earlier coverage, like when we first noticed [Chris]’ channel, or when he fabricated and blued the clock’s hands. We can’t wait for the next Clickspring project, and we know what we’re watching tonight.


Filed under: clock hacks, misc hacks

These Sands Of Time Literally Keep Time

Hour glasses have long been a way to indicate time with sand, but the one-hour resolution isn’t the best. [Erich] decided he would be do better and made a clock that actually wrote the time in the sand. We’ve seen this before with writing time on a dry erase board with an arm that first erases the previous time and then uses a dry erase marker to write the next time. [Erich]’s also uses an arm to write the time, using the tip of a sea shell, but he erases the time by vibrating the sandbox, something that took much experimentation to get right.

To do the actual vibrating he used a Seeed Studio vibration motor which has a permanent magnet coreless DC motor. Interestingly he first tried with a rectangular sandbox but that resulted in hills and valleys, so he switched to a round one instead. Different frequencies shifted the sand around in different ways, some moving it to the sides and even out of the sandbox, but trial and error uncovered the right frequency, duration, and granular medium. He experimented with different sands, including litter for small animals, and found that a powder sand with small, round grains works best.

Four white LEDs not only add to the nice ambience but make the writing more visible by creating shadows. The shells also cleverly serve double duty, both for appearance and for hiding things. Shells cause the arms to be practically invisible until they move (well worth viewing the video below), but the power switch and two hooks for lifting the clock out of the box are also covered by shells. And best of all, the tip that writes in the sand is a shell. There’s plenty more to admire about the cleverness and workmanship of this one.

We also have to wonder at what other dioramas are possible with this setup. How about a Halloween setting with a skeleton emerging from the sand? Perhaps white sand would make good snow for a Christmas setting?

Here’s the sandclock at an earlier testing stage but where you can better see the workings in action.

[via Adafruit]


Filed under: clock hacks

Decimal Time Clocks in under 1 kB

Humans historically have worked well with decimal numbering systems. This is probably due to the fact most of us have ten fingers, which make counting in base ten easy. Yet humanity seems to doggedly stick to the odd duodecimal/sexagesimal time system. [Danjovic] is bringing a bit of sanity into the mix with a decimal clock he calls DC-10. He’s entered his clock into our 1 kB Challenge.

DC-10 builds upon C10, the decimal time display system created by [KnivD] on Hackaday.io.

In [KnivDHere how it works:

  • 1 year = 365.25 days (we can’t change this anyway)
  • 1 day = 100 intervals (the equivalent of ‘hours’)
  • 1 interval = 100 centivals (equivalent of ‘minutes’)
  • 1 centival = 100 ticks (equivalent of ‘seconds’)
  • 1 tick = 0.0864 current seconds.

1kb-thumb[Danjovic’s] implantation displays intervals and centivals, exactly what you would need to know the current time of day. He used a Microchip PIC16F628 running from a 4 MHz clock. time is displayed on seven segment LEDs. The PIC is programmed in C, using the classic version of Microchip’s own IDE: MPLAB 8.92. The code uses 297 program words. Since the ‘628 uses 14-bit instructions, that equates to just under 520 bytes. Perfect for the 1 kB challenge!

If you have a cool project in mind, there is still plenty of time to enter the 1 kB Challenge! Deadline is January 5, so check it out and fire up your assemblers!


Filed under: clock hacks

7 Segment Display Using Neopixel Rings

There’s something about clocks — sooner or later, every hacker wants to build one. And we end up seeing all kinds of display techniques being used to show time. For the simplest of builds, 7-segment display modules usually get dug up from the parts bin. If you have a bunch of “smart” LED’s (WS2812’s, APA102’s), then building your own custom 7-segment modules isn’t too difficult either. [rhoalt] had neither, but he did have several 8 LED Neopixel rings lying around. So he thought of experimenting with those, and built a ‘Binoctular’ LED clock which uses the Neopixel rings as 7 segment displays.

figure-eight-segment-displaysEach digit is made using one pair of Neopixel rings, stacked to form a figure of eight. All the digits are composed of arcs, so readability isn’t the best but it’s not hard either. [rhoalt] does mention that the display is easier to read via blurred camera images rather than visually, which isn’t surprising. We’re long used to seeing numbers composed of straight line segments, so arc segmented digits do look weird. But we wouldn’t have known this if [rhoalt] hadn’t shown us, right ? Maybe a thicker diffuser with separator baffles may improve the readability.

The rest of the build is pretty plain vanilla — an Arduino Nano clone, a DS3231 RTC, a Lithium battery, and some buttons, all housed together in a laser cut enclosure which follows the figure of eight design brief. And as usual, once you’ve built one, it’s time to improve and make a better version.


Filed under: clock hacks, led hacks

Adjusting clock with alarm, hygrometer & thermometer on 1.8″ ST7735 display

PB300160-600

Nicu Florica blogged about his adjusting clock with alarm, hygrometer and thermometer on 1.8″ ST7735 display:

I use feature from article Another adjusting clock with alarm & thermometer using DS3231 on 1.8″ ST7735 display and change reading internal temperature of DS3231 with DHT22 senzor (AM2302), but you can use a cheaper and not very precise DHT11 senzor.
By using educ8stv_rtctft160_alarm_dht.ino or much better educ8stv_rtctft160_alarm_eeprom_dht.ino sketch, on display you can see: name of day, date, hour clock, hour alarm, temperature and humidity

Project details at Arduinotehniq blog.

Check out the video after the break.

NixieBot Films Your Tweets

[Robin Bussell]’s NixieBot is a mash up of new age electronics and retro vintage components and he’s got a bunch of hacks crammed in there. It’s a Nixie tube clock which displays tweets, takes pictures of the display when it encounters tweets with a #NixieBotShowMe hash tag, and then posts requested pictures back to twitter. If a word is eight characters, it takes a snapshot. If it’s a longer message, NixieBot takes a series of pictures of each word, converts it to an animated GIF, and then posts the tweet. In between, it displays random tweets every twenty seconds. You can see the camera setup in the image below and you should check out the @nixiebot twitter feed to see some of the action.

nixiebot_05For the display, he’s using eight big vintage Burroughs B7971 Nixie Tubes. These aren’t easy to source, and current prices hover around $100 each if you can find them. The 170V DC needed to run each tube comes from a set of six 12V to 170V converter boards specifically designed to drive these tubes. Each board can drive at least a couple of nixies, so [Robin]’s able to use just four boards for the eight tubes. Each nixie is driven by its own “B7971 SmartSocket“, a dedicated PIC16F690 micro-controller board custom designed for the purpose. A serial protocol makes it easy to daisy-chain the SmartSockets to build multi character displays.

nixiebot_01The rest of the build is pretty straight forward. A Raspberry-Pi running Twython for Twitter communications, GrafixMagick for GIF creation, Picamera for taking pictures and GPIO libraries for controlling the display. The software to run all of this is hosted on his GitHub repository with some basic instructions on how to put it together.

A more detailed reference is available on the NixieBot blog. He’s designed a Pi shield board to house the high voltage modules, a 5V DC-DC converter and the Pi GPIO header. He’s probably got a few more to spare, so with a bit of luck in finding the elusive Nixie tubes, and some deep pockets, it ought to be relatively easy to build your version of the NixieBot.

And if the NixieBot has got your interest piqued, check out “The Art of making a Nixie Tube” featuring the work of [Dalibor Farnby].


Filed under: Raspberry Pi