App note: Current sense amplifiers in class-D audio subsystems

an_ti_slva031

App note from Texas Instruments about output current sensing in class-D amplfiers. Link here (PDF)

Current sensing in audio subsystems are widely used in conjunction with CLASS-D amplifiers for diagnostics or to provide speaker current feedback to the DSP for speaker enhancement to emulate smartamp. The most expensive component in the audio subsystem is the speaker. The impedance of the speakers ranges from 2Ω for subwoofer to a 8Ω for stereo speakers. Exceeding the current flowing through the speakers has a potential to create excessive heat in the voice coil which can lead to permanent damage of the speakers.

App note: Fundamentals of operation and recent developments of class D amplifiers

an_maxim_AN3977

Good read about class D amplfiers from MAXIM Integrated. Link here (PDF)

A Class D amplifier’s high efficiency makes it ideal for portable and compact high-power applications. Traditional Class D amplifiers require an external lowpass filter to extract the audio signal from the pulse-width-modulated (PWM) output waveform. Many modern Class D amplifiers, however, utilize advanced modulation techniques that, in various applications, both eliminate the need for external filtering and reduce electromagnetic interference (EMI). Eliminating external filters not only reduces board-space requirements, but can also significantly reduce the cost of many portable/compact systems.

App note: Class D audio amplifier performance relationship to MOSFET parameters

an_irf_an-1070

Application note from International Rectifier on MOSFET paremeters to consider when designing a Class D audio amplifier. Link here (PDF)

Class D audio amplifier is a switching amplifier that consists in a pulse width modulator (with switching frequency in order of several hundred kHz), a power bridge circuit and a low pass filter. This type of amplifier has demonstrated to have a very good performance. These include power efficiencies over 90%, THD under 0.01%, and low EMI noise levels that can be achieved with a good amplifier design.

Key factors to achieve high performance levels in the amplifier are the switches in power bridge circuit. Power losses, delay times, and voltage and current transient spikes should be minimized as much as possible in these switches in order to improve amplifier performance. Therefore, switches with low voltage drop, fast on and off switching times and low parasitic inductance are needed in this amplifier.

MOSFET have proved to be the best switch option for this amplifier because of its switching speed. It is a majority carrier device, its switching times are faster in comparison with other devices such as IGBT or BJT, resulting in better amplifier efficiency and linearity.