UPDI Programmer Stick

Johnson Davies designed and built this UPDI Programmer Stick based on an ATmega328P, that is available on GitHub:

This is a USB-stick sized UPDI programmer, for programming Microchip’s new 0-series and 1-series ATtiny chips from the Arduino IDE
It’s based on an ATmega328P, and is essentially an Arduino Uno on a USB stick, so you also could use it as a mini-sized Arduino Uno.

Project details at technoblogy.com.

Single diode temperature sensor with Arduino ICU (& reverse-bias leakage)

Use a single diode as a temperature sensor with Arduino ICU

Our LED light-sensing experiments lead to an interesting observation: When these loggers are left running overnight they still produce readings because reverse-bias ‘leakage-current’ eventually triggers the Interrupt Capture Unit (ICU) – in the absence of any light. The speed of this self-discharge depends on the ambient temperature. If you deliberately cover an rgb LED with heat shrink, the different color channels have different rates of thermal decay

More details on Underwater Arduino Data Loggers blog.

Arduboy with removable flash cart

A homebrew Arduboy with removale flash cart from Facelesstech:

I’ll start with the Arduboy its self. I wanted to make a small Arduboy that anyone with basic soldering skills could make. I don’t think its the easies of boards to solder but its the only way I could make it small enough and have all the features I wanted. I just went with the standard SSH1106 0.96″ screen that most people use in their homemade builds. The buttons I went with are the ones I’ve been using on my other RetroPie builds in the past. They are soft touch but they are not mushy like some are and have a small foot print.

More details on Facelesstech homepage.

Check out the video after the break.

Sweeperino, Arduino based test instrument

20150705_032526

Ashhar Farhan (VU2ESE) made an Arduino based sweeper for ham radio homebrewing, that is available on GitHub:

The Sweeperino a very useful Arduino based test instrument. It is the following:
*A very stable, low noise signal generator from 4 MHz to 160 MHz without any spurs
*A high precision power meter with 90 db with 0.2db resolution
*A sweeper that can be your antenna analyzer, plot your crystal or band pass filter through the PC
*It fits in your jacket
*It can be assembled in an evening
*Costs about $50 in new parts

See the full post on VU2ESE’s radio experiments blog.

Simple DataFlash board

dataflash

David Johnson writes:

This is a small board that plugs into one of the headers on an Arduino Uno or other board to provide 4Mbytes of non-volatile storage
It works with either 5V or 3.3V boards, and is based on the low-cost 4Mbyte Winbond W25Q32FVSIG DataFlash chip. It is ideal for applications such as data logging, playing audio samples, and storing text.
I also describe a simple DataFlash library to interface to the board.

More details on Technoblogy.

Programmable seven segment LED tester

Finished1-600

A Seven segment LED tester project from Arduino Enigma:

Here is the finished Seven Segment Tester. All of the available Arduino Nano pins, except for analog input pins A6,A7 and Serial Port pins D0 and D1 are connected. This leaves us with 18 pins to bring to the 3M Zero Insertion Force (ZIF) socket. Any display up to 9 pin DIP can be tested.
Here are some pictures of the device testing a 16 segment display, a 7 segment display and a 3 digit 7 segment display. The common cathode and common anode versions are programmed as test patterns.
Once the Arduino is programmed, the device can work standalone using a 9v battery.

More details on Arduino Enigma Machine Simulator blog.

Check out the video after the break.

63 dB step attenuator

stepatten front

DuWayne published a new build:

While I was working on the power meter function for the latest version of the SNA, I used several fixed attenuators for checking linearity and calibration. It would be a lot easier if I had a variable step attenuator. I have several digital controlled attenuator modules that I bought one eBay a while ago, and I guess it is time to use some of them. There are several models available. The ones I plan on using are the simplest with only 6 control pins for a total attenuation of 31.5 dB in .5 dB steps. I am going to connect two in series with the control lines paralleled for a total of 63 dB in 1 dB steps.

See the full post on his blog.