App note: How to shrink your USB Type-C battery charger


Maxim’s app note on a highly compact Type-C charger solution. Link here (PDF)

A highly integrated solution, as seen with the MAX77860 USB Type-C 3A switch-mode charger, dramatically reduces system complexity by integrating the charger, the power path, the Safeout LDO, ADC, and the USB-C CC and BC 1.2 detection in a small 3.9mm x 4.0mm, 0.4mm pitch, WLP package. OTG functionality is seamlessly integrated without the need for an extra inductor. This level of integration simplifies the design, enabling the delivery of more power and more functionality in minimal PCB space.

App note: Overture series high power solutions

Overture Application Note AN-1192

This application note (PDF) from TI discusses the different aspects of the Overture series high-power solutions, and discusses three application circuits: parallel, bridged, and bridged/parallel configurations

The objective is to provide simple high-power solutions that are conservatively designed, highly reliable and have low part count. This document provides three specific, but not unique, application circuits that provide output power of 100W, 200W,
and above. These circuits are the parallel, bridged, and bridged/parallel configurations.
These three circuits are simple to understand, simple to build and require very few external components compared
to discrete power amplifier designs. Simplicity of design and few components make this solution much more reliable than discrete amplifiers. In addition, these circuits inherently possess the full protection of each individual IC that is very difficult and time consuming to design discretely. Finally, these circuits are well know and have been in industry for years.

App note: Magnetometer placement in mobile devices


App note from Kionix about magnetometer integration challenges from the mobile equipment point of view, and gives guidelines for the mounting position of the magnetic sensor. Link here (PDF)

Electronic devices contain many parts which can affect a magnetic sensor. When deciding the mounting position, it is necessary to consider the types of materials and the amount of current carried in proximity of the magnetic sensor. Accuracy of an electronic compass depends upon getting clean geomagnetic data from the magnetic sensor output without errors caused by other magnetic elements. These errors need to be canceled by calibration or correction.

App note: Using two tri-axis accelerometers for rotational measurements


App note from Kionix on utilizing 2 linear accelerometers to determine angular rotational rates. Link here (PDF)

In many applications, customers would like to measure rotational motions (angular velocity, angular acceleration) in addition to linear motions. Most often, gyroscopes are added to their end product to obtain the rotational information. In some instances, customers already have a system that contains two or more accelerometers. With some understanding of fundamental physics, they can extract more than just linear acceleration data from their system.

App note: Light quality – White light parameters


App note from OSRAM on consistency of colors specifically white lights. Link here (PDF)

White light is not the same as white light. When different light sources are used, color differences may become visible. To understand why this can happen, it is necessary to understand how people perceive color and light. Nevertheless, it is possible to reduce the color shifts by choosing suitable white LEDs combined with an appropriate system setup. This application note provides basic information on optical quantities, color spaces and CIE chromaticity diagrams. Furthermore, it describes how color consistency for white light applications can be achieved.

App note: Ambient lighting design utilizing RGB LEDs


App note from OSRAM on using RGB LEDs or their MULTILED® for automotive interior lighting. Link here (PDF)

This application note describes the advantages and challenges of utilizing RGB LEDs for ambient lighting control. Besides pointing out practical challenges, preferred solutions for RGB LEDs are outlined and discussed to assist customers with engineering design solutions.

App note: Eye safety for proximity sensing using infrared light-emitting diodes


A guide to human eye safety for designers of consumer products, app note from Renesas. Link here (PDF)

Active Proximity Sensing for Consumer products requires the use of a light-emitting component to illuminate the target object to be detected at some distance from the sensor. Typically, product designers do not want the illumination to interfere with the other functions of the product, or to distract the user during normal use. Therefore, Infrared Light-emitting Diodes (IR-LEDs) are used as the light-emitting components for proximity sensing. To further reduce the user awareness of the proximity function, the IR-LED and the proximity sensor are located under heavily tinted – but, infrared-transmitting – glass. While remaining unaware of any illuminating light source, the consumer indeed is exposed to low-levels of infrared radiation. All consumer products that emit light radiation – whether visible, ultraviolet, or infrared – must adhere to international standards that specify exposure limits for human eye safety.

App note: Basics on decoupling


See AVX technical note on how capacitors filter out transients in high speed digital circuits. Link here (PDF)

This paper discusses the characteristics of multilayer ceramic capacitors in decoupling applications and compares their performance with other types of decoupling capacitors. A special high-frequency test circuit is described and the results obtained using various types of capacitors are shown.

App note: Hand soldering tutorial for fine pitch QFP devices


No SMD tools removal and soldering of QFP packages tutorial from Silicon labs. Link here (PDF)

This document is intended to help designers create their initial prototype systems using Silicon Lab’s TQFP and LQFP devices where surface mount assembly equipment is not readily available. This application note assumes that the reader has at least basic hand soldering skills for through-hole soldering. The example presented will be the removal, cleanup and replacement of a TQFP with 48 leads and 0.5 mm lead pitch.