App note: Thermal consideration of flash LEDs

an_osram_AN082

Pulsed LED application like flash LEDs requires adequate thermal management to counter the heavy heat caused by larger current, here’s an app note from OSRAM discussing on thermal management of LEDs. Link here (PDF)

This application note focuses on how to develop an adequate thermal management for LEDs in camera flash applications. It provides information on critical factors and the thermal properties of LEDs during a range of operation modes as well as information on how to develop an adequate thermal management in flashlight applications.

App note: Dimming InGaN LEDs

an_osram_AN042

App note from OSRAM on InGaN LEDs dimming method without penalty on its wavelength. Link here (PDF)

While the InGaN technology produces the brightest light output across Blue, Deep blue, Verde, True green and White, it is important to understand that the wavelength of the light emitted depends on the forward current. In order to avoid shifts in the color, the dimming strategy must be considered carefully.

App note: Understanding the safety certification of digital isolators

Understanding the safety certification of digital isolators

This application note summarizes the international safety standards and certifications that apply to digital isolators. Link here

Digital isolators provide signal isolation and the level shifting required for the correct operation of many circuits. Equally important, they insulate the user from electric shock. With basic human safety considerations so pertinent here, these isolators must undergo extensive testing and certification to ensure user safety. This article briefly summarizes the international safety standards and certifications that apply to digital isolators. An example exercise using the MAX1493x family shows how an IC designer must use a data sheet and the standard’s specification tables to determine which digital isolator will be optimal for an application.

App note: Securing vibration motor leads and wires

an_precisionmicrodrives_ab009

App note from Precision Microdrives on how to properly connect wires on to vibration motors for reliability. Link here

Vibration motors require electrical power, which must be delivered by wires or PCB tracks to the motor. Precision Microdrives vibrating motors are available in a range of connector forms. From stock, they are available with factory installed leads, terminals, PCB solder pins, or as PCB SMT / SMD options. Solder pins and SMT motors have the advantage of being mounted directly onto the PCB which simplifies the connection process.

App note: Vibration Motors – Voltage Vs Frequency Vs Amplitude

an_precisionmicrodrives_an029

All about vibration motors and how its frequency and amplitude be controlled in this app note from Precision Microdrives. Link here

We’re often asked how to adjust the vibration amplitude or frequency of our various vibration motors. In this article, we’ll look at how simple it is, why it can be useful, and how we can predict the behaviour of a motor using the driving voltage and Typical Performance Characteristics graph.

App note: MELF resistors – The world’s most reliable and predictable, high-performing film resistors

an_vishay_melfre

App note from Vishay on why MELF resistors are so successful and has no alternative in today’s application. Link here (PDF)

For more than 25 years, Vishay’s MELF resistors have successfully met the demanding requirements of the automotive industry. They offer superior SMD resistor performance in terms of accuracy, stability, reliability, and pulse load capability. The cylindrical construction of MELF devices provides an optimal power rating and pulse load capability related to the mounting space. Continuous development has led to improved long-term stability and moisture resistance, and allows high-temperature operation to + 175 °C.

App note: Understanding the characteristics of Li-ion batteries and Richtek power management solutions

an_richtek_an023

App note from Richtek on how to work with Li-ion batteries properly. Link here

Lithium-ion/polymer rechargeable batteries, which have been widely used today, have distinguished properties, but are very delicate and have to be used with extreme care. Improper use of Li-ion batteries will bring about catastrophic consequences. The incidences of burning and explosions of Li-ion batteries have often been heard. Carefully understanding their properties and adopting a right battery management method is most essential for making good use of Li-ion batteries.

App note: Driving LEDs with a PIC Microcontroller

An App note from OSRAM on an Intelligent control circuitry example using a PIC Microcontroller. Link here (PDF)

Nowadays, applications increasingly make use of LEDs as a replacement for traditional light bulbs. For example, LEDs are frequently used in the design of automobile tail lights, signal lights, traffic signals, and variable message signs.

LEDs provide several advantages over traditional light bulbs, such as smaller size and longer life. In many applications, the LEDs must be driven with intelligent control circuitry. According to the task at hand, this control circuitry must be able to fulfill various functions and tasks.