App note: Application of SiC MOSFETs

an_on_AD9691-D

App note from ON Semiconductors about Silicon Carbide MOSFETs, their difference and gains over Silicon MOSFETs. Link here (PDF)

Among the Wide Band Gap materials silicon carbide (SiC) is by far the most mature one. The raw wafer quality has greatly improved over the last years with significant reduction of micro pipes and dislocations. Silicon carbide devices can work at high temperatures, are very robust and offer both low conduction and switching losses. The high thermal conductivity makes SiC also a perfect choice for high power applications, when good cooling is required. Compared to silicon switches, silicon carbide MOSFETs inherit some specific characteristics like the shift of gate threshold a designer should be aware of. This effect will be explained in this application note.

App note: Choose the right power supply for your FPGA

an_maxim_an5447

Designing a power supply for FPGA includes multiple voltage, ripple management and power sequencing, here’s an app note from Maxim Integrated. Link here (PDF)

Field-programmable gate arrays (FPGAs) and complex programmable logic devices (CPLDs) require 3 to 15, or even more, voltage rails. The logic fabric is usually at the latest process technology node that determines the core supply voltage. Configuration, housekeeping circuitry, various I/Os, serializer/deserializer (SerDes) transceivers, clock managers, and other functions all have differing requirements for voltage rails, sequencing/tracking, and voltage ripple limits. An engineer must consider all of these issues when designing a power supply for an FPGA.

App note: Current-sense amplifier doubles as a high common mode instrumentation amplifier

an_maxim_an4495

Application note from Maxim intergrated on utilizing a boost converter and a current-sense amplifier to form a regulator that derives +5V from -48V without isolation. Link here (PDF)

Instrumentation amplifiers (IAs) are used where gain accuracy and dc precision are important, such as in measurement and test equipment. The downside of IAs is the cost. However, inexpensive current-sense amplifiers handle high common-mode voltages and share some traits with IAs. As a result, in some applications, such as a ground-referenced -48V to +5V power converter, current-sense amplifiers can replace IAs, thereby reducing cost.

App note: Current sensing in metering applications using a pulse current sensor and ST metering devices

an_stm_CD00289924

App note from STMicroelectronics about current sensing using Rogowski coil together with STPMxx metering device. Link here (PDF)

This application note describes the benefits of a current sensing system for metering applications using STPMxx metering devices and a current sensor developed by Pulse Engineering Inc. (hereafter referred to as “Pulse current sensor”), based on the Rogowski coil principle. Following an overview of the Rogowski coil principle, the Pulse current sensor is introduced along with a comparison to other current measuring devices. This is followed by a presentation of the characteristics of the STPMxx family of metering devices, and the results of accuracy testing conducted using a demonstration board with the STPM01 and the Pulse current sensor.

App note: Watt-hour meter based on the STM32F101 microcontroller

an_stm_CD00293110

ARM Microcontroller based watt-hour meter implementation from STMicroelectronics. Link here (PDF)

This document describes, in detail, the hardware and software implementation of a watthour meter using the STM32F101 microcontroller. This cost effective watt-hour meter uses shunt with an operational amplifier as a current sensor, an embedded 12-bit ADC for current and voltage measurement, GPIO for LCD management, and a lot of other peripherals for communication, tamper detection, keyboard, and power disconnection. Powerful architecture of the STM32™ microcontroller allows sampling at 1 Msps. The high sampling rate makes it possible to use methods for ADC resolution enhancement.

App note: Thermal design calculations for integrated stepper motor driver solutions

an_stm_DM00273729

Another technical note from STMicroelectronics on fine tuning motor drivers for optimal thermal design. Link here (PDF)

One constant trend in the automotive world is the tendency to reduce the size of electronic components and the ECUs (Electronic Control Unit). While this development has many benefits for the car manufacturer as well as for the end customer, there are also challenges for the developers of these systems: especially for power drivers the design of robust applications requires an accurate estimation of the thermal power dissipation on a system level.

In this article a method to calculate the thermal power dissipation of a stepper motor driver is derived from a simple example to a model that includes the various configuration options and modes of a state of the art stepper driver, like that of ST Microelectronic’s L9942.

App note: Pop & click in audio amplifiers

an_stm_CD00047185

Technical note from STMicroelectronics about popping noise usually heard on audio amplifiers and how to minimize it. Link here (PDF)

Pop and click, or rather, the absence of it, is a characteristic that makes a lot of impact in the world of audio amplifiers. This is especially true for those destined for headphone-equipped applications (such as mobile phones and MP3 players).
Pop and click are the names given to the popping noise that may be heard through the headphones when you switch on or off portable audio equipment or mobile phones. The noise is generated by a voltage difference at across the output stage of the amplifier at switch-on or switch-off before it reaches its idle (or equilibrium) state.

App note: Characteristics and applications of fast recovery epitaxial diodes (FRED)

an_ixys_IXAN0044

All about ultrafast diodes app note from IXYS. Link here (PDF)

During the last 10 years, power supply topology has undergone a basic change. Power supplies of all kinds are now constructed so that heavy and bulky 50/60 Hz mains transformers are no longer necessary. These transformers represented the major part of volume and weight of a traditional power supply. Today they have been replaced with smaller and lighter transfomers, whose core materials now consist of sintered ferrites instead of iron laminations and which can operate up to 250 kHz. For the same power rating, high frequency operation significantly reduces the weight and volume of the transformer. This development has been significantly influenced by new, fast switching power transistors, such as MOSFETS or IGBTs, working at high blocking voltages (VCES > 600 V).

Apart from the characteristics of the transitor switches, the on-state and dynamic characteristics of the free wheeling diodes have a significant impact on the power loss, the efficiency and the degree of safety in operation of the whole equipment. They also play a decisive role when it comes to increasing the efficiency of a SMPS and to reduce the losses of an inverter, which clearly mandates that ultrafast diodes be used. The ultrafast diodes described here embrace all characteristics of modern epitaxial diodes, such as soft recovery, low reverse recovery current IRM with short reverse recovery times.

App note: Optimized diodes for switching applications

an_ixys_IXAN0060

An app note from IXYS about choosing the right diode for efficiency and cost. Link here (PDF)

Great efforts have been made to improve power switches – MOSFETs and IGBTs – to decrease forward voltage drop and as well as to decrease turn-off energy. In switching inductive loads, the turn-on losses depend strongly of the behavior of the companion free-wheeling diode and now form the major part of over-all power losses. New developments like series connected diodes in a single package can greatly improve a given design. This paper shows how to choose the optimum diode using the specific example of a PFC circuit.