App note: How to use power inductors

an_tdk_apn-power-inductor

A great guide from TDK about power inductors used in DC-DC converters. Link here

As electronic devices become more advanced, the power supply voltage of LSIs used in them is lowered, so their power consumption can be reduced and their speed increased. However, a decrease in the power supply voltage also causes the requirements regarding voltage fluctuations to become more severe, creating a need for high-performance DC-DC converters to fulfill these characteristic requirements, and power inductors are important components that greatly affect their performance.

App note: Operating voltage ratings for inductors

an_coilcraft_DOC1520

Coilcraft’s app note on why inductor’s voltage ratings are uncommonly mentioned in most applications. Link here (PDF)

Voltage ratings are often specified for many electronic components, including capacitors, resistors and integrated circuits, but traditionally this has been rare for inductors. Recent trends, particularly the introduction of higher voltage rated semiconductor devices, have created a new emphasis on operating voltage as part of the inductor selection process. Inductors once considered optimized for high current, low voltage applications are finding homes in new designs that apply higher voltage stress to the inductor.

App note: Power supply topologies – Forward of Flyback? Which is Better? Both!

an_coilcraft_DOC1500

App note from Coilcraft camparing two recognized power supply topologies. Link here (PDF)

Beatles or Stones? Michael or LeBron? Deep dish or thin crust? Forward or flyback? These are just a few of the age-old questions that have been hotly debated over the years, people arguing their opinions with great vigor. But, the truth is, most of the time the answer is both, due to the merits of each.

In this article, we will focus on forward or flyback. We’ll discuss the characteristics of active clamp forward and continuous conduction flyback isolated power supply topologies and demonstrate the design and performance trade-offs of each using two telecom-oriented power supplies as examples.

App note: Replacing traditional optocouplers with Si87xx digital isolators

an_silabs_an729

Digital isolator from Silicon Labs app note shows pin compatible plus high performance replacment of incumbent optoisolators, link here (PDF)

Opto-couplers are a decades-old technology widely used for signal isolation, typically providing safety isolation, signal level shifting, and ground loop mitigation. They are commonly used in a wide range of end applications, including data communication circuits, switch mode power systems, measurement and test systems, and isolated data acquisition systems. Optocouplers have several weaknesses, including parametric instability with temperature and device aging, significant internal parasitic couplings, long propagation delay times, narrow operating temperature ranges, and relatively low reliability.

Today’s advanced CMOS signal isolation products offer better timing performance, higher reliability, and lower power consumption compared to optocouplers and are capturing sockets traditionally held by optocouplers. However, converting to CMOS isolation devices has, most often, required circuit changes and PCB modifications that cost money and create design risks, until now.

App note: Introduction to gapped clocks and PLLs

an_silabs_an561

App note from Silicon Labs on the introduction of gapped clocks, how they can be used in network timing, and their impact upon phase locked loop (PLL) technology. Link here (PDF)

Gapped clocks are periodic clock signals of a single clock frequency that have clock pulses removed from their stream. Well-formed gapped clocks do not have reduced width pulses (known as runt pulses). Rather, each individual clock pulse is either completely present or completely absent.

App note: Miniature, precision negative reference requires no precision resistors

an_maxim_AN824

App note from Maxim Integrated creating voltage negative reference from charge-pump inverter plus positive voltage reference combo. Link here (PDF)

This application note discusses how to build a negative voltage reference without using external resistors or a negative supply by simply combining a simple charge-pump inverter and a positive output voltage reference.

App note: Simple test method for estimating the stability of linear regulators

an_rohm_linear_reg_stability_test

Tips from ROHM Semiconductor to estimate the stability of linear regulator using simple step response method. Link here (PDF)

Low drop-out (LDO) regulators developed back in the age when large-capacitance multi-layer ceramic capacitors (hereinafter, MLCCs) were uncommon cause a phase delay, leading to oscillation when connected to a low-ESR capacitor like an MLCC. Often, MLCCs are used to save board space and prolong the lives of electronic components. A resistor placed in series in the circuit increases apparent ESR and establishes a phase lead that enable the use of an MLCC as an output capacitor. Phase margin measurement is practical on an LDO having variable output voltage, since its feedback loop is outwardly exposed. However, on a fixed output voltage LDO, the phase margin cannot be measured because of its closed loop circuit.

App note: Receiving S/PDIF audio stream with the STM32F4/F7/H7 series

an_stm_DM00431633

App note from STMicroelectronics about electrically connecting an external S/PDIF stream to an STM32 with an S/PDIFRX interface peripheral, Link here (PDF)

The Sony/Philips Digital Interface Format (S/PDIF) is a point-to-point protocol for serial and uni-directional transmission of digital audio through a single transmission line for consumer and professional applications. The transmission of data can be done in several ways, by electrical or optical means.

The S/PDIFRX peripheral embedded in STM32 devices is designed to receive an S/PDIF flow compliant with IEC-60958 and IEC-61937, which define the physical implementation requirements as well as the coding and the protocol. These standards support simple stereo streams up to high sample rates, and compressed multi-channel surround sound, such as those defined by Dolby or DTS.