App note: Controlling LED lighting using triacs and quadracs

an_littlefuse_littelfuse_triac_quadrac_led dimming_appnote

Solid State device and circuits for controlling LEDs lighting, replacing conventional incandescent lamps, an App note from Littlefuse. Link here (PDF)

Light Emitting Diodes (LEDs) are fast becoming the most popular lighting option. Industry forecasts anticipate the market will continue to expand at an annual rate of 20% from 2011 to 2016, with the greatest growth coming in the commercial and industrial lighting sectors. As incandescent lamps have been made largely obsolete, given the U.S. government’s mandate to save energy, they have frequently been replaced by LEDs due to their long life (typically 25,000 hrs.) and the ease of adapting them to many different socket and shape requirements. However, LED lighting control presents a few problems not encountered with incandescent lamps. For example, with much less current from the LED load, normal types of triacs may be challenged in terms of latching and holding current characteristics.

Triacs make up the heart of AC light dimming controls. Triacs used in dimmers have normally been characterized and specified for incandescent lamp loads, which have high current ratings for both steady-state conditions and initial high in-rush currents, as well as very high end-of-life surge current when a filament ruptures.

Because they are diodes, LEDs have much lower steady-state current than incandescent lamps, and their initial turn-on current can be much higher for a few microseconds of each half-cycle of AC line voltage. Therefore, a spike of current can be seen at the beginning of each AC half-cycle. Typically, the current spike for an AC replacement lamp is 6–8 A peak; the steady-state follow current is less than 100 mA.

Designing an AC circuit for controlling LED light output is very simple when using the new Q6008LH1LED or Q6012LH1LED Series Triacs because only a few components are required. All that is needed is a firing/triggering capacitor, a potentiometer, and a voltage breakover triggering device.

App note: Microcontroller-based serial port interface (SPI®) boot circuit

an_ad_an812

Simple circuit for sending command upon boot to the target device sortof boostraping hardware tachnique, an app note from Analog Devices. Link here (PDF)

This application note describes the operation of a general purpose, microcontroller-based Serial Port Interface (SPI) boot circuit. This is a low cost solution for users who need to modify some of their device’s parameters at power up. This circuit addresses a 3-wire SPI application for programming converters, or any device that has a SPI option, and sends commands to user-defined SPI registers.

App note: Peak-to-peak resolution versus effective resolution

an_ad_an615

Effective resolution is superior compared to peak-to-peak resolution when comparing ADCs from different companies. An application note from Analog Devices. Link here (PDF)

The low bandwidth, high resolution ADCs have a resolution of 16 bits or 24 bits. However, the effective number of bits of a device is limited by noise. This varies depending on the output word rate and the gain setting used. This parameter is specified by some companies as effective resolution. Analog Devices specifies peak-to-peak resolution, which is the number of flicker-free bits and is calculated differently from effective resolution. This application note distinguishes between peak-to-peak resolution and effective resolution.

App note: LED back light driving methods

an_hantronix_led-dim

Using pulse width modulation scheme for LCD back lighting an app note from Hantronix. Link here (PDF)

LED back lights on LCD modules are generally driven with a dc voltage through a current limiting resistor. This simple approach is perfectly acceptable for most applications. When the primary consideration is an extra bright display, the lowest possible power consumption, or a back light that can be controlled over a very wide brightness range another method is needed. The purpose of the paper is to describe this method.

App note: Temperature compensation for LCD displays

an_hantronix_tempcomp

For over the normal range temperature, Hantronix presents a simple temperature compensation circuit to correct LCD contrast, Link here (PDF)

The optimal contrast setting for LCD displays varies with ambient temperature. For most applications this variation in contrast is tolerable over the “normal” temperature range of 0°C to +50°C. Most Hantronix LCD modules are available with an extended temperature range option which allows the display to operate from -20°C to +70°C. The changes in contrast are NOT usually tolerable over this wide a range of temperatures, which means a way of adjusting the contrast voltage as the ambient temperature changes must be provided.

As the temperature decreases the LCD fluid requires a higher operating voltage in order to maintain a given optical contrast. One way to provide for this is to give the user control of the contrast. This is a simple solution but quite often its not desirable or practical.

App note: Voltage generating circuits for LCD contrast control

an_hantronix_neg-invr

Another application note from Hantronix, Inc. on simple to digitally controlled efficient power supply for LCD display contrast. Link here (PDF)

Many LCD display modules require a negative or positive voltage that is higher than the logic voltage used to power an LCD. This voltage, called Vl, Vee or the bias voltage, would require a second power supply in the application device. If this power source is not available the LCD bias voltage must be generated from an existing voltage, either the logic voltage (+3.0-+5v) or a battery. This application note describes circuits for generating either a negative or positive LCD bias voltage from such a voltage source.

The LCD bias voltage is used to power the circuits that drive the LCD glass. This voltage sets the contrast level of the LCD. Since any changes in this voltage will cause a visible change in the contrast of the LCD it must be regulated to better than about 200mV. Any noise or ripple on this signal may cause visible artifacts on the LCD so they must be kept below about 100mV.

App note: An explanation of LCD viewing angle

an_hantronix_v-angle

An application note from Hantronix, Inc. on LCD viewing angles and how it influences the selection of the right LCD for your application. Link here (PDF)

LCD displays have a limited viewing angle. They lose contrast and become hard to read at some viewing angles and they have more contrast and are easier to read at others. The size of the viewing angle is determined by several factors, primarily the type of LCD fluid and the duty cycle. Because the viewing angle tends to be smaller than most people would like, a bias is designed into the module at the time it is manufactured. This means the nominal viewing angle is offset from the perpendicular by some amount. Several versions of the LCD module are then offered with this bias set to different angles or positions to accommodate as many applications as possible. The term “bias angle” is often used erroneously with the term “viewing angle”.

App note: High-speed input clock issues

an_e2v_doc0871B

Clock jitter are a big issue in high-speed ADC, here’s an application note from e2V to guide users deals with these problems. Link here (PDF)

The e2v converters family addresses the high-speed market in the field of ADCs as well as DACs, with frequencies operating in the GHz range. Such high-speed devices require high-speed clock signals, which are usually subject to noise and wich users are not used to deal with. As a matter of fact, the clock signal integrity is one of the main factor to be taken into account for proper operation of an ADC.

High-speed ADCs require a low phase noise clock (namely a low jitter clock) in order to limit the dynamic performance degration caused by noise on the clock. Event though many manufacturers offer crystal oscillators with the right jitter characteristics, only a few are able to generate clocks in the GHz range.

These two issues are addressed in this paper, which intends to help the user understand the jitter phenomenon and design a proper clock with the right performance.

App note: Power factor correction using the IRS2500

an_irf_an-1173

Drop in replacement power factor correction chip IRS2500 from International Rectifier. Link here (PDF)

Many offline applications require power factor correction circuitry in order to minimize transmission line losses and stress on electrical generators and transformers created by high harmonic content and phase shift. Appliances often incorporate switching power supplies (SMPS) which include capacitive filter circuitry followed by a bridge rectifier and bulk capacitor supplying a load. Without power factor correction circuitry a SMPS draws a high peak current close to the line voltage peak and almost no current over much of the cycle, resulting in a power factor of around 0.5 and a high total harmonic distortion. Power factor correction circuitry is added which enables the appliance to draw a sinusoidal current from the AC line with negligible phase shift and very low harmonic distortion. This allows optimization of the load seen by the power grid such that power can be supplied without creating additional conductive losses in transmission lines or additional burden on transformers and generators. Costs to electricity providers are therefore reduced, which are hopefully passed on to the consumer.

App note: Auto-zero amplifiers ease the design of high-precision circuits

an_ti_slyt204

An application note from Texas Instruments on new chopper amplifers superiority over old design chopper amps. Link here (PDF)

This article shows that the auto-zero calibration technique is very different from the chopper technique and is one that, when implemented through modern process technology, allows the economical manufacturing of wideband, high-precision amplifiers with low output noise.