App note: Reduced power dissipation of relay loads


Another app note from ON Semiconductors on using PWM technique to reduce power consumed when latching mechanical relays. Link here (PDF)

Integrated circuit driver circuits often use relay loads in their application. Output drivers are a source of power dissipation on the IC. Latching relays can be used to keep sustaining load current at a minimum by engaging and removing drive current, but a PWM system can also preserve reduced power conditions by engaging and reducing duty cycle using standard type relays.

By considering the Maximum Turn−On Voltage and Minimum Turn−Off Voltage specifications typically quoted in the relay electrical specification, your system design can utilize a signal to pull−in and activate the relay followed by a reduced power PWM sustaining signal.

App note: The load switch – Selection and use of ecoSWITCH(TM) products


ecoSWITCH(TM) from ON Semiconductors offers space saving solution on power distribution system. Link here (PDF)

Load switches play an important part in the management of supply domains and the protection of the loads they supply. Loads switches are often used for power sequencing, standby load leakage reduction, and inrush current control. Integrated ecoSWITCH products deliver an area reducing solution, offering over current protection, load soft start, and extremely low on series resistances of sub − 20 milliohm. This article discusses the primary benefits of load switches, application considerations, and how ecoSWITCH differs from other types of integrated switch offerings. A generic cloud system application and USB power delivery example are presented to demonstrate how the addition of ecoSWITCH solves design challenges such as achieving low quiescent current, local load protection, and startup sequencing.

App note: The behavior of electro-magnetic radiation of power inductors in power management


Würth Elektronik app note on EM radiation emission from power inductors. Link here (PDF)

DC-DC converters are widely used in power management applications and the inductor is one of the key components. The usual focus is on electrical performance characteristics such as RDC, RAC and core losses. But, the electro-magnetic radiation characteristics can often be overlooked.

Due to the switching action in SMPS, AC voltage/current is produced over the inductor. Since, an inductor can, in effect, operate as a transmitting loop antenna, the electromagnetic radiation depends on a number of factors. These include the source properties such as core material, shielding material and the orientation of the start of the winding amongst others.

Electromagnetic radiation of an inductor in the low frequency spectrum range (100 kHz to 30 MHz), which is caused by the switching frequency and harmonics, is dependent on whether the inductor is shielded and the winding properties. Whereas, in the high frequency spectrum range (30 MHz to 1 GHz), where emissions are caused by ringing frequencies and their harmonics, the electromagnetic radiation is more dependent on the shielding characteristics of the core material, switching frequency and transitions of the switching converter.

App note: How to use power inductors


A great guide from TDK about power inductors used in DC-DC converters. Link here

As electronic devices become more advanced, the power supply voltage of LSIs used in them is lowered, so their power consumption can be reduced and their speed increased. However, a decrease in the power supply voltage also causes the requirements regarding voltage fluctuations to become more severe, creating a need for high-performance DC-DC converters to fulfill these characteristic requirements, and power inductors are important components that greatly affect their performance.

App note: Operating voltage ratings for inductors


Coilcraft’s app note on why inductor’s voltage ratings are uncommonly mentioned in most applications. Link here (PDF)

Voltage ratings are often specified for many electronic components, including capacitors, resistors and integrated circuits, but traditionally this has been rare for inductors. Recent trends, particularly the introduction of higher voltage rated semiconductor devices, have created a new emphasis on operating voltage as part of the inductor selection process. Inductors once considered optimized for high current, low voltage applications are finding homes in new designs that apply higher voltage stress to the inductor.

App note: Power supply topologies – Forward of Flyback? Which is Better? Both!


App note from Coilcraft camparing two recognized power supply topologies. Link here (PDF)

Beatles or Stones? Michael or LeBron? Deep dish or thin crust? Forward or flyback? These are just a few of the age-old questions that have been hotly debated over the years, people arguing their opinions with great vigor. But, the truth is, most of the time the answer is both, due to the merits of each.

In this article, we will focus on forward or flyback. We’ll discuss the characteristics of active clamp forward and continuous conduction flyback isolated power supply topologies and demonstrate the design and performance trade-offs of each using two telecom-oriented power supplies as examples.

App note: Replacing traditional optocouplers with Si87xx digital isolators


Digital isolator from Silicon Labs app note shows pin compatible plus high performance replacment of incumbent optoisolators, link here (PDF)

Opto-couplers are a decades-old technology widely used for signal isolation, typically providing safety isolation, signal level shifting, and ground loop mitigation. They are commonly used in a wide range of end applications, including data communication circuits, switch mode power systems, measurement and test systems, and isolated data acquisition systems. Optocouplers have several weaknesses, including parametric instability with temperature and device aging, significant internal parasitic couplings, long propagation delay times, narrow operating temperature ranges, and relatively low reliability.

Today’s advanced CMOS signal isolation products offer better timing performance, higher reliability, and lower power consumption compared to optocouplers and are capturing sockets traditionally held by optocouplers. However, converting to CMOS isolation devices has, most often, required circuit changes and PCB modifications that cost money and create design risks, until now.

App note: Introduction to gapped clocks and PLLs


App note from Silicon Labs on the introduction of gapped clocks, how they can be used in network timing, and their impact upon phase locked loop (PLL) technology. Link here (PDF)

Gapped clocks are periodic clock signals of a single clock frequency that have clock pulses removed from their stream. Well-formed gapped clocks do not have reduced width pulses (known as runt pulses). Rather, each individual clock pulse is either completely present or completely absent.

App note: Miniature, precision negative reference requires no precision resistors


App note from Maxim Integrated creating voltage negative reference from charge-pump inverter plus positive voltage reference combo. Link here (PDF)

This application note discusses how to build a negative voltage reference without using external resistors or a negative supply by simply combining a simple charge-pump inverter and a positive output voltage reference.

App note: Simple test method for estimating the stability of linear regulators


Tips from ROHM Semiconductor to estimate the stability of linear regulator using simple step response method. Link here (PDF)

Low drop-out (LDO) regulators developed back in the age when large-capacitance multi-layer ceramic capacitors (hereinafter, MLCCs) were uncommon cause a phase delay, leading to oscillation when connected to a low-ESR capacitor like an MLCC. Often, MLCCs are used to save board space and prolong the lives of electronic components. A resistor placed in series in the circuit increases apparent ESR and establishes a phase lead that enable the use of an MLCC as an output capacitor. Phase margin measurement is practical on an LDO having variable output voltage, since its feedback loop is outwardly exposed. However, on a fixed output voltage LDO, the phase margin cannot be measured because of its closed loop circuit.