Inside a two-quadrant power supply – Agilent 66312A teardown and experiment

Agilent66312A

Kerry Wong did a teardown of an Agilent 66312A dynamic measurement DC source:

Typically, a lab power supply can only operate within a single quadrant. Take a positive voltage power supply for example, it can only output or source current. If any attempt is made trying to sink current into the power supply by connecting a voltage source with a higher voltage than the output voltage of the power supply, the power supply would lose regulation since it cannot sink any current and thus is unable to bring down and regulate the voltage at its output terminals.
The Agilent 66312A dynamic measurement DC source however is a two-quadrant power supply, it not only can source up to 2A of current between 0 and 20V, but also can sink up to 1.2A or 60% of its rated output current as well. Although lacking some key functionality of a source measure unit (SMU), Agilent 66312A can nevertheless be used in similar situations where both current sourcing and sinking capabilities are needed.

More details on Kerry Wong’s blog.

Check out the video after the break.

Teardown, repair and analysis of an Agilent E4443A 3Hz – 6.7GHz PSA series Spectrum Analyzer

Teardown, repair and analysis of an Agilent E4443A 3Hz – 6.7GHz PSA series Spectrum Analyzer from The Signal Path:

In this episode Shahriar repairs an Agilent PSA Series Spectrum Analyzer. The instrument generates many errors during self-alignment and produces no measurements below 3.2GHz. The block diagram of the unit is thoroughly presented and various possible failure points are considered. Based on the observation of the noise floor, the most likely cause is the second LO module. The measurement of the LO power indicates that the second LO power is fall below nominal.

More details at The Signal Path homepage.

Teardown and repair of an Agilent E3632A DC power supply

pE3632A-e1505951806733-600

Teardown and repair of an Agilent E3632A DC power supply from The Signal Path:

In this episode Shahriar & Rosanah investigate an Agilent power supply which does not appear to power on. It can be quickly observed that the fuse has failed on the unit. Using an isolation transformer a small amount of AC voltage is applied to the unit after the fuse replacement. It is clear that a short is present somewhere in the instrument since even at 10V AC the instrument consumes more than 1A.

See the full post at thesignalpath.com.

Check out the video after the break.

Teardown and analysis of an Agilent 86109B Optical/Electrical DCA-X oscilloscope module

pic-86109B-189x300

Teardown and analysis of an Agilent 86109B Optical/Electrical DCA-X oscilloscope module from The Signal Path:

In this episode Shahriar presents the inner workings of an Agilent 86109B optical/electrical DCA-X oscilloscope module. This particular model offers up to 50GHz of electrical bandwidth and an optical input capable of receiving up to 40Gb/s data rates. The differences between a real-time and sub-sampling oscilloscopes are presented with focus on ADC resolution, signal periodicity requirements and input bandwidth. The block diagram of the module as well as a sub-sampling oscilloscope is also presented.
The teardown of the module shows various components such as samplers, O/E conversion block, impulse generator as well as a step-recovery diode driver. I/O interfaces as well as various analog blocks are also shown. Several modules are further disassembled to observe the inner semiconductor designs under the microscope.

Check out the video after the break.