App note: Modern thermocouples and a high-resolution DeltaSigma ADC enable high-precision temperature measurement

an_maxim_AN5032

Old app note from Maxim Integrated about high-precision temperature measurement. Link here (PDF)

Many industrial and medical applications require temperature measurements with accuracies of ±1°C or better, performed with reasonable cost over a wide range of temperatures (-270°C to +1750°C), and often with low power consumption. Properly selected, standardized, modern thermocouples paired with high-resolution ADC data acquisition systems (DASs) can cover this wide temperature range and ensure reproducible measurements, even in the harshest industrial environments.

App note: Sterilization methods and their impact on medical devices containing electronics

App note from Maxim Integrated on electronic devices sterilization. Link here (PDF)

Although there is considerable literature about sterilization methods and equipment, there is very little written about the impact of sterilization on electronics. This article compares popular sterilization methods and discusses their suitability for objects containing electronics.

Scott’s Z80SBC: Z80 single board computer

Z80SBC

Dr. Scott M. Baker published a new build:

When I was first getting started with electronics, wanted a Heathkit ET-3400 Microproccessor trainer, but could never afford one at the time. Eventually both I and the world moved on, to fancier more capable computers. However, I’ve still always wished I had an iconic trainer, complete with LED displays and a hexadecimal keypad. So I decided to build something of my own.

Project info at smbaker.com and the GitHub repository here.

Check out the video after the break.

Inside a Datum 9300 time code generator

Datum9300front-600

Kerry Wong did a teardown of a Datum 9300 time code generator:

IRIG time code generators (not to be confused with the ones used in video and film industry) are often used for clock synchronization among various connected equipment and is commonly used in power generation and distribution industry as well as in the military. In this blog post we will take a look inside a Datum 9300 time code generator from the late 80’s. A video detailing the teardown is linked towards the end of the post.

See the full post on his blog here.

Check out the video after the break.

Pi-powered Atari 5200 multi-ROM cartridge (MultiCart)

pi-atari-board

Dr. Scott M. Baker has a nice write-up about building a multi-ROM cartridge for his Atari 5200 using Raspberry Pi:

The Atari 5200 is a vintage gaming system from the early 1980s. At the time I owned a 2600, but I always wanted a 5200. Well, in 2018 I finally decided to find one on eBay and buy it. I learned that the first thing you want to do after attaining a new gaming console is to get your hands on every available game cartridge for it, so I made this multi-ROM cartridge.
A multi-ROM cartridge, or “MultiCart” is a cartridge that contains more than one ROM image. There are multiple ways to go about this from selector switches to pick the cartridge you want, to built-in in game menu systems. I decided to go the route of using a Raspberry Pi for the user interface, making a WEB UI available to pick which cartridge is used.
The goal is not simply to play retro games on modern hardware — there’s any number of emulation solutions for that. The goal is to play retro games on retro hardware, but use a modern system to load the game image into the console.

See the full post at smbaker.com and the GitHub repository here.

Check out the video after the break.

Particle sensor with LoRa

pm-sensor-finished

Mare published a new build:

Particle sensors could be cheap and easy to use. Disadvantage of lowest cost PM sensors is lack of “calibration”. The best method to measure particle content dispensed in the air is to collect the air sample and analyse it off-line in the laboratory with proper equipment (not cheap at all). Optical particle counting sensors use the light scattering method to detect and count particles in the operating concentration range in a given environment. A laser light source illuminates a particle as it is pulled through the detection chamber. As particles pass through the laser beam, the light source becomes obscured and is recorded on the photo or light detector. The light is then analyzed and converted to an electrical signal providing particulate size and quantity to predict concentrations in real time.

See the full post on Mare & Gal Electronics blog.

Energy Meter module to analyze the electrical grid parameters and consumption

featured-2

Boris Landoni from Open Electronics writes about a new open source energy meter project:

In the first installment, you had the opportunity of learning about our energy meter, and of learning about its details, with special attention the technical ones. Our energy meter is based on the coupling – by means of two measuring transformers – to an integrated circuit, that enables the detection of the values as for voltage and current, in addition to the corresponding phase angles, so to be able to know the real, the reactive and the apparent power, in addition to the phase angle (cosφ). We developed a software to be paired to our measuring board, so that it may be used for the configuration and calibration of the integrated circuit, and for the real-time display of the electrical measurings that it has carried out.

More details at Open-Electronics.org.  Be sure to see Part 1 here.